Skip to main content
Log in

13C-detection two-dimensional NMR approaches for cellulose derivatives

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

To demonstrate the effectiveness of 13C-detection two-dimensional NMR methods used for the characterization protein structures for the characterization of cellulose derivatives, 13C–13C COSY, 13C–13C INADEQUATE, and 13C–13C TOCSY experiments were applied to 13C-enriched sodium carboxymethyl cellulose and cellulose acetate. These samples were prepared from bacterial cellulose biosynthesized by Gluconacetobacter xylinus ATCC 53582 in medium containing 20 % uniformly 13C-labelled glucose in unlabeled glucose. The combination of 13C–13C COSY (or 13C–13C INADEQUATE) and 13C–13C TOCSY spectra of the cellulose derivatives facilitated the direct and precise assignment of all ring carbons of each anhydroglucose unit comprising the cellulose chain during the short experimental time. In addition, a short spin-lock time (~24 ms) in the 13C–13C TOCSY experiments was revealed to be preferable for achieving improved sensitivity and obtaining correlation signals between all carbons in the anhydroglucose units of the cellulose derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

13C:

Carbon-13

15N:

Nitrogen-15

1D:

One-dimensional

1H:

Proton

2D:

Two-dimensional

AGU:

Anhydroglucose unit

BC:

Bacterial cellulose

CA:

Cellulose acetate

CMC:

Carboxymethyl cellulose sodium salt

COSY:

Correlation spectroscopy

D2O:

Deuterium oxide

DIPSI:

Decoupling in the presence of scalar interactions

DMSO:

Dimethyl sulfoxide

DQ:

Double quantum

DSAC :

Substitution degree of acetyl group

DSCM :

Substitution degree of carboxymethyl group

DSS:

4,4-Dimethyl-4-silapentane-1-sulfonic acid

FID:

Free induction decay

G. xylinus :

Gluconacetobacter xylinus

HSQC:

Heteronuclear single quantum coherence

INADEQUATE:

Incredible natural abundance double quantum transfer experiment

NMR:

Nuclear magnetic resonance

NOESY:

Nuclear Overhauser and effect spectroscopy

S/N:

Signal-to-noise ratio

SQ:

Single quantum

T 2 :

Spin–spin relaxation time

TOCSY:

Total correlation spectroscopy

References

  • Arashida T, Ishino T, Kai K, Hatanaka K, Akaike T, Matsuzaki K, Kaneko Y, Mimura T (1993) Biosynthesis of cellulose from culture media containing 13C-labeled glucose as a carbon source. J Carbohydr Chem 12:641–649. doi:10.1080/07328309308019413

    Article  CAS  Google Scholar 

  • Bax A, Freeman R, Frenkiel TA (1981a) An NMR technique for tracing out the carbon skeleton of an organic molecule. J Am Chem Soc 103:2102–2104. doi:10.1021/ja00398a044

    Article  CAS  Google Scholar 

  • Bax A, Freeman R, Frenkiel TA, Levitt MH (1981b) Assignment of carbon-13 NMR spectra via double-quantum coherence. J Magn Reson 43:478–483. doi:10.1016/0022-2364(81)90060-3

    CAS  Google Scholar 

  • Bax A, Grzesiek S, Gronenborn AM, Clore GM (1994) Isotope-filtered 2D HOHAHA spectroscopy of a peptide-protein complex using heteronuclear Hartmann–Hahn dephasing. J Magn Reson A 106:269–273. doi:10.1006/jmra.1994.1038

    Article  CAS  Google Scholar 

  • Bermel W, Bertini I, Felli IC, Kümmerle R, Pierattelli R (2003) 13C direct detection experiments on the paramagnetic oxidized monomeric copper, zinc superoxide dismutase. J Am Chem Soc 125:16423–16429. doi:10.1021/ja037676p

    Article  CAS  Google Scholar 

  • Bertini I, Felli IC, Kümmerle R, Moskau D, Pierattelli R (2004) 13C–13C NOESY: an attractive alternative for studying large macromolecules. J Am Chem Soc 126:464–465. doi:10.1021/ja0357036

    Article  CAS  Google Scholar 

  • Bromand S, Whalen JK, Janzen HH, Schjoerring JK, Ellert BH (2001) A pulse-labelling method to generate 13C-enriched plant materials. Plant Soil 235:253–257. doi:10.1023/A:1011922103323

    Article  CAS  Google Scholar 

  • Bubb WA (2003) NMR spectroscopy in the study of carbohydrates: characterizing the structural complexity. Concepts Magn Reson A 19A:1–19. doi:10.1002/cmr.a.10080

    Article  CAS  Google Scholar 

  • Bush CA, Martin-Pastor M, Imberty A (1999) Structure and conformation of complex carbohydrates of glycoproteins, glycolipids, and bacterial polysaccharides. Annu Rev Biophys Biomol Struct 28:269–293. doi:10.1146/annurev.biophys.28.1.269

    Article  CAS  Google Scholar 

  • Cavanagh J, Rance M (1992) Suppression of cross-relaxation effects in TOCSY spectra via a modified DIPSI-2 mixing sequence. J Magn Reson 96:670–678. doi:10.1016/0022-2364(92)90357-D

    CAS  Google Scholar 

  • Duus JØ, Gotfredsen CH, Bock K (2000) Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. Chem Rev 100:4589–4614. doi:10.1021/cr990302n

    Article  CAS  Google Scholar 

  • Eyler RW, Klug ED, Diephuis F (1947) Determination of degree of substitution of sodium carboxymethylcellulose. Anal Chem 19:24–27. doi:10.1021/ac60001a007

    Article  CAS  Google Scholar 

  • Fernández C, Szyperski T, Ono A, Iwai H, Tate S, Kainosho M, Wüthrich K (1998) NMR with 13C, 15N-doubly-labeled DNA: the antennapedia homeodomain complex with a 14-mer DNA duplex. J Biomol NMR 12:25–37. doi:10.1023/A:1008280117211

    Article  Google Scholar 

  • Fesik SW, Eaton HL, Olejniczak ET, Zuiderweg ERP, McIntosh LP, Dahlquist FW (1990) 2D and 3D NMR spectroscopy employing carbon-13/carbon-13 magnetization transfer by isotropic mixing. Spin system identification in large proteins. J Am Chem Soc 112:886–888. doi:10.1021/ja00158a069

    Article  CAS  Google Scholar 

  • Fontana C, Kovacs H, Widmalm G (2014) NMR structure analysis of uniformly 13C-labeled carbohydrates. J Biomol NMR 59:95–110. doi:10.1007/s10858-014-9830-6

    Article  CAS  Google Scholar 

  • Friedrich MW (2006) Stable-isotope probing of DNA: insights into the function of uncultivated microorganisms from isotopically labeled metagenomes. Curr Opin Biotech 17:59–66. doi:10.1016/j.copbio.2005.12.003

    Article  CAS  Google Scholar 

  • Gitti R, Long G, Bush CA (1994) Measurement of long-range2 13C–1H coupling constants of 95% uniformly 13C-labeled polysaccharide from streptococcus mitis J22. Biopolymers 34:1327–1338. doi:10.1002/bip.360341005

    Article  CAS  Google Scholar 

  • Hikichi K, Kakuta Y, Katoh T (1995) 1H NMR study on substituent distribution of cellulose diacetate. Polym J 27:659–663. doi:10.1295/polymj.27.659

    Article  CAS  Google Scholar 

  • Hofmann K, Hatakeyama H (1994) 1H n.m.r. relaxation studies and lineshape analysis of aqueous sodium carboxymethylcellulose. Polymer 35:2749–2758. doi:10.1016/0032-3861(94)90303-4

    Article  CAS  Google Scholar 

  • Kjellberg A, Nishida T, Weintraub A, Widmalm G (1998) NMR spectroscopy of 13C-enriched polysaccharides: application of 13C–13C TOCSY to sugars of different configuration. Magn Reson Chem 36:128–131. doi:10.1002/(SICI)1097-458X(199802)36:2<128:AID-OMR226>3.0.CO;2-L

    Article  CAS  Google Scholar 

  • Kjellberg A, Weintraub A, Widmalm G (1999) Structural determination and biosynthetic studies of the O-antigenic polysaccharide from the Enterohemorrhagic Escherichia coli O91 using 13C-enrichment and NMR spectroscopy. Biochemistry 38:12205–12211. doi:10.1021/bi9910629

    Article  CAS  Google Scholar 

  • Kono H (2013a) Chemical shift assignment of the complicated monomers comprising cellulose acetate by two-dimensional NMR spectroscopy. Carbohydr Res 375:136–144. doi:10.1016/j.carres.2013.04.019

    Article  CAS  Google Scholar 

  • Kono H (2013b) 1H and 13C chemical shift assignment of the monomers that comprise carboxymethyl cellulose. Carbohydr Polym 97:384–390. doi:10.1016/j.carbpol.2013.05.031

    Article  CAS  Google Scholar 

  • Kono H, Yunoki S, Shikano T, Fujiwara M, Erata T, Takai M (2002a) CP/MAS 13C NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the 13C resonance for the ring carbons of cellulose triacetate polymorphs. J Am Chem Soc 124:7506–7511. doi:10.1021/ja010704o

    Article  CAS  Google Scholar 

  • Kono H, Erata T, Takai M (2002b) CP/MAS 13C NMR study of cellulose and cellulose derivatives. 2. Complete assignment of the 13C resonance for the ring carbons of cellulose triacetate polymorphs. J Am Chem Soc 124:7512–7518. doi:10.1021/ja010705g

    Article  CAS  Google Scholar 

  • Kono H, Erata T, Takai M (2003a) Determination of the through-bond carbon–carbon and carbon–proton connectivities of the native celluloses in the solid state. Macromolecules 36:5132–5138. doi:10.1021/ma021769u

    Google Scholar 

  • Kono H, Erata T, Takai M (2003b) Complete assignment of the CP/MAS 13C NMR spectrum of cellulose IIII. Macromolecules 36:3589–3592. doi:10.1021/ma021015f

    Article  CAS  Google Scholar 

  • Kono H, Numata Y, Erata T, Takai M (2004) 13C and 1H Resonance assignment of mercerized cellulose II by two-dimensional MAS NMR spectroscopies. Macromolecules 37:5310–5316. doi:10.1021/ma030465k

    Article  CAS  Google Scholar 

  • Kono H, Hashimoto H, Shimizu Y (2015) NMR characterization of cellulose acetate: chemical shift assignments, substituent effects, and chemical shift additivity. Carbohydr Polym 118:91–100. doi:10.1016/j.carbpol.2014.11.004

    Article  CAS  Google Scholar 

  • Machonkin TE, Westler WM, Markley JL (2002) 13C{13C} 2D NMR: a novel strategy for the study of paramagnetic proteins with slow electronic relaxation rates. J Am Chem Soc 124:3204–3205. doi:10.1021/ja017733j

    Article  CAS  Google Scholar 

  • Malm CJ, Tanghe LJ, Laird BC (1946) Preparation of cellulose acetate—action of sulfuric acid. Ind Eng Chem 38:77–82. doi:10.1021/ie50433a033

    Article  CAS  Google Scholar 

  • Martin-Pastor M, Bush CA (1999) New strategy for the conformational analysis of carbohydrates based on NOE and 13C NMR coupling constants. Application to the flexible polysaccharide of Streptococcus mitis J22. Biochemistry 38:8045–8055. doi:10.1021/bi9904205

    Article  CAS  Google Scholar 

  • Miyazaki T, Sato H, Sakakibara T, Kajihara Y (2000) An approach to the precise chemoenzymatic synthesis of 13C-labeled sialyloligosaccharide on an intact glycoprotein: a novel one-pot [3-13C]-labeling method for sialic acid analogues by control of the reversible aldolase reaction, enzymatic synthesis of [3-13C]-NeuAc-α-(2 → 3)-[U-13C]-Gal-β-(1 → 4)-GlcNAc-β-sequence onto glycoprotein, and its conformational analysis by developed NMR techniques. J Am Chem Soc 122:5678–5694. doi:10.1021/ja994211j

    Article  CAS  Google Scholar 

  • Numata Y, Kono H, Kawano S, Erata T, Takai M (2003) Cross-polarization/magic-angle spinning 13C nuclear magnetic resonance study of cellulose I–ethylenediamine complex. J Biosci Bioeng 96:461–466. doi:10.1016/S1389-1723(03)70132-7

    Article  CAS  Google Scholar 

  • Opella ST (2006) Structural biology: designer labels. Nature 440:40. doi:10.1038/440040a

    Article  CAS  Google Scholar 

  • Roudaut G, van Dusschoten D, As HV, Hemminga MA, Meste ML (1998) Mobility of lipids in low moisture bread as studied by NMR. J Cereal Sci 28:147–155. doi:10.1006/jcrs.1998.0196

    Article  CAS  Google Scholar 

  • Schlufter K, Schmauder H-P, Dorn S, Heinze T (2006) Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-methylimidazolium chloride. Macromol Rapid Comm 27:1670–1676. doi:10.1002/marc.200600463

    Article  CAS  Google Scholar 

  • Schramm M, Gromet Z, Hestrin S (1957) Synthesis of cellulose by Acetobacter xylinum. 3. Substrates and inhibitors. Biochem J 67:669–679

    Article  CAS  Google Scholar 

  • Tugarinov V, Kanelis V, Kay LE (2006) Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat Protoc 1:749–754. doi:10.1038/nprot.2006.101

    Article  CAS  Google Scholar 

  • Walker TE, London RE, Whaley TW, Barker R, Matwiyoff NA (1976) Carbon-13 nuclear magnetic resonance spectroscopy of [1-13C] enriched monosaccharides. Signal assignments and orientational dependence of geminal and vicinal carbon–carbon and carbon–hydrogen spin–spin coupling constants. J Am Chem Soc 98:5807–5813. doi:10.1021/ja00435a011

    Article  CAS  Google Scholar 

  • Witter R, Sternberg U, Hesse S, Kondo T, Koch F-T, Ulich AS (2006) 13C chemical shift constrained crystal structure refinement of cellulose Iα and its verification by NMR anisotropy experiments. Macromolecules 39:6125–6132. doi:10.1021/ma052439n

    Article  CAS  Google Scholar 

  • Yamaguchi Y, Kato K, Shindo M, Aoki S, Furusho K, Koga K, Takahashi N, Arata Y, Shimada I (1998) Dynamics of the carbohydrate chains attached to the Fc portion of immunoglobulin G as studied by NMR spectroscopy assisted by selective 13C labeling of the glycans. J Biomol NMR 12:385–394. doi:10.1023/A:1008392229694

    Article  CAS  Google Scholar 

  • Yu L, Goldman R, Sullivan P, Walker GF, Fesik SW (1993) Heteronuclear NMR studies of 13C-labeled yeast cell wall β-glucan oligosaccharides. J Biomol NMR 3:429–441. doi:10.1007/BF00176009

    Article  CAS  Google Scholar 

  • Yunoki S, Osada Y, Kono H, Takai M (2004) Role of ethanol in improvement of bacterial cellulose production: Analysis using 13C-labeled carbon sources. Food Sci Technol Res 10:307–313. doi:10.3136/fstr.10.307

    Article  CAS  Google Scholar 

  • Zhou Z, Kümmerle R, Qiu X, Redwine D, Cong R, Taha A, Baugh D, Winniford B (2007) A new decoupling method for accurate quantification of polyethylene copolymer composition and triad sequence distribution with 13C NMR. J Magn Reson 187:225–233. doi:10.1016/j.jmr.2007.05.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research C-25410134 from the Japan Society for Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Kono.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kono, H., Anai, H., Hashimoto, H. et al. 13C-detection two-dimensional NMR approaches for cellulose derivatives. Cellulose 22, 2927–2942 (2015). https://doi.org/10.1007/s10570-015-0697-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0697-9

Keywords

Navigation