Skip to main content
Log in

Examination of biological hotspot hypothesis of primary cell wall using a computational cell wall network model

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Computational modeling reveals that a cell wall network whose mechanical integrity is dominated by a small mass fraction of “hotspot” linkers between microfibrils can sit close to a percolation threshold, across which mechanical integrity is very sensitive to the number of hotspots. In the model, the mechanical properties of cell wall fragments consisting of cellulose microfibrils and xyloglucan linkers with different levels of disorder were examined under progressive decimation of the network, modeling enzymatic degradation. The percolation limit so obtained is close to mass fraction of xyloglucan that must be removed to induce creep experimentally. Greater disorder in the interconnectivity of the network raises the number of hotspot linkers per fibril necessary to reach the percolation threshold. To maintain the required mechanical stiffness with a sparse network of hotspot connections, either each xyloglucan linker must be much stiffer than a single polymeric strand or an additional cell wall component, i.e. pectin, must carry substantial load with a sensitive non-linear mechanical response, such as that associated with a glass transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alcoutlabi M, McKenna GB (2005) Effects of confinement on material behaviour at the nanometre size scale. J Phys Condens Matter 17(15):R461. doi:10.1088/0953-8984/17/15/R01

    Article  CAS  Google Scholar 

  • Arola S, Malho JM, Laaksonen P, Lille M, Linder MB (2013) The role of hemicellulose in nanofibrillated cellulose networks. Soft Matter 9(4):1319–1326

    Article  CAS  Google Scholar 

  • Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21(1):203–222

    Article  CAS  Google Scholar 

  • Beaucage G, Composto R, Stein RS (1993) Ellipsometric study of the glass transition and thermal expansion coefficients of thin polymer films. J Polym Sci Part B Polym Phys 31(3):319–326. doi:10.1002/polb.1993.090310310

    Article  CAS  Google Scholar 

  • Binder K, Heermann D (1997) Monte Carlo simulation in statistical physics. Springer, Berlin

    Book  Google Scholar 

  • Bootten TJ, Harris PJ, Melton LD, Newman RH (2004) Solid-state 13C-NMR spectroscopy shows that the xyloglucans in the primary cell walls of mung bean (Vigna radiata L.) occur in different domains: a new model for xyloglucan–cellulose interactions in the cell wall. J Exp Bot 55(397):571–583

    Article  CAS  Google Scholar 

  • Cave ID (1968) The anisotropic elasticity of the plant cell wall. Wood Sci Technol 2:268–278

    Article  Google Scholar 

  • Cosgrove DJ (2000a) Expansive growth of plant cell walls. Plant Physiol Biochem 38(1–2):109–124

    Article  CAS  Google Scholar 

  • Cosgrove DJ (2000b) Loosening of plant cell walls by expansins. Nature 407(6802):321–326

    Article  CAS  Google Scholar 

  • Cosgrove DJ, Jarvis MC (2012) Comparative structure and biomechanics of plant primary and secondary cell walls. Front Plant Sci 3:204

    Article  Google Scholar 

  • Doblin MS, Pettolino F, Bacic A (2010) Evans review: plant cell walls: the skeleton of the plant world. Funct Plant Biol 37(5):357

    Article  CAS  Google Scholar 

  • Dyson RJ, Jensen OE (2010) A fibre-reinforced fluid model of anisotropic plant cell growth. J Fluid Mech 655:472–503

    Article  Google Scholar 

  • Fujino T, Sone Y, Mitsuishi Y, Itoh T (2000) Characterization of cross-links between cellulose microfibrils, and their occurrence during elongation growth in pea epicotyl. Plant Cell Physiol 41(4):486–494

    Article  CAS  Google Scholar 

  • Fujita M, Wasteneys GO (2013) A survey of cellulose microfibril patterns in dividing, expanding, and differentiating cells of Arabidopsis thaliana. Protoplasma 251(3):687–698

    Article  Google Scholar 

  • Hejnowicz Z, Borowska-Wykrȩt D (2005) Buckling of inner cell wall layers after manipulations to reduce tensile stress: observations and interpretations for stress transmission. Planta 220(3):465–473

    Article  CAS  Google Scholar 

  • Janmey PA, MacKintosh FC (2014) Cytoplasmic transport: bacteria turn to glass unless kicked. Curr Biol 24:R226–R228

    Article  CAS  Google Scholar 

  • Kha H, Tuble SC, Kalyanasundaram S, Williamson RE (2010) WallGen, software to construct layered cellulose–hemicellulose networks and predict their small deformation mechanics. Plant Physiol 152(2):774–786

    Article  CAS  Google Scholar 

  • Li H, Rief M, Oesterhelt F, Gaub HE, Zhang X, Shen J (1999) Single-molecule force spectroscopy on polysaccharides by AFM nanomechanical fingerprint of -(1,4)-linked polysaccharides. Chem Phys Lett 305(3):197–201

    Article  CAS  Google Scholar 

  • McCann MC, Wells B, Roberts K (1992) Complexity in the spatial localization and length distribution of plant cell-wall matrix polysaccharides. J Microsc 166(1):123–136

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Morris S, Hanna S, Miles MJ (2004) The self-assembly of plant cell wall components by single-molecule force spectroscopy and Monte Carlo modelling. Nanotechnology 15(9):1296–1301

    Article  CAS  Google Scholar 

  • Park YB, Cosgrove DJ (2012) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 158(4):1933–1943

    Article  CAS  Google Scholar 

  • Peaucelle A, Braybrook S, Höfte H (2012) Cell wall mechanics and growth control in plants: the role of pectins revisited. Front Plant Sci 3(June):121

    CAS  Google Scholar 

  • Quesada Cabrera R, Meersman F, McMillan PF, Dmitriev V (2011) Nanomechanical and structural properties of native cellulose under compressive stress. Biomacromolecules 12(6):2178–2183

    Article  CAS  Google Scholar 

  • Sakurada I, Ito T, Nakamae K (1964) Elastic moduli of polymer crystals for the chain axial direction. Die Makromol Chem 75(1):1–10

    Article  CAS  Google Scholar 

  • Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant cell walls. Science (New York, NY) 306(5705):2206–2211

    Article  CAS  Google Scholar 

  • Suslov D, Verbelen JP (2006) Cellulose orientation determines mechanical anisotropy in onion epidermis cell walls. J Exp Bot 57(10):2183–2192

    Article  CAS  Google Scholar 

  • Systmes D (2012) Abaqus 6.12 online documentation

  • Wei C, Lintilhac L, Lintilhac P (2006) Loss of stability, pH, and the anisotropic extensibility of Chara cell walls. Planta 223:1058–1067

    Article  CAS  Google Scholar 

  • Yi H, Puri VM (2012) Architecture-based multiscale computational modeling of plant cell wall mechanics to examine the hydrogen-bonding hypothesis of the cell wall network structure model. Plant Physiol 160(November):1281–1292

    Article  CAS  Google Scholar 

  • Yi H, Puri VM (2014) Contributions of the mechanical properties of major structural polysaccharides to the stiffness of a cell wall network model. Am J Bot 101:244–254

    Article  Google Scholar 

  • Zhang T, Mahgsoudy-Louyeh S, Tittmann B, Cosgrove DJ (2014) Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. Cellulose 21(2):853–862

    Article  Google Scholar 

  • Zhao Z, Shklyaev OE, Nili A, Mohamed MNA, Kubicki JD, Crespi VH, Zhong L (2013) Cellulose microfibril twist, mechanics, and implication for cellulose biosynthesis. J Phys Chem A 117(12):2580–2589. doi:10.1021/jp3089929

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported as part of The Center for LignoCellulose Structure and Formation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolmadjid Nili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nili, A., Yi, H., Crespi, V.H. et al. Examination of biological hotspot hypothesis of primary cell wall using a computational cell wall network model. Cellulose 22, 1027–1038 (2015). https://doi.org/10.1007/s10570-015-0568-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0568-4

Keywords

Navigation