Skip to main content
Log in

Sol–gel based water repellent coatings for textiles

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Surfaces of cotton, polyester (PES) and polyamide (PA) fabrics have been modified by the sol–gel process in order to achieve silica based hybrid coatings onto the fibers for enhancing their water repellency, thermal stability and mechanical properties. The effects of synthesis parameters such as the concentration of the alkoxysilane used as main precursor, the chloropropyltriethoxysilane (CPTS), and the impregnation time of the fabrics in the solution (sol) prepared have been thoroughly investigated, aiming at the optimization of the targeted properties. Scanning electron microscopy images of the sol–gel treated fabrics exhibit significant differences from the untreated ones. The amount of silicon deposited onto the fabrics was determined by inductively coupled plasma atomic emission spectroscopy. The droplet shapes analysis confirmed that the water repellency of the fabric was dramatically improved after sol–gel treatment. The breaking strengths of the PES and PA fabrics coated with CPTS sols increase with higher sol concentration. Thermogravimetry analyses have been used to assess the thermal stability of treated fabrics. Finally, the influence of accelerated artificial photoageing on water repellency properties was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alongi J, Ciobanu M, Tata J, Carosio F, Malucelli G (2010) Thermal stability and flame retardancy of polyester, cotton, and relative blend textile fabrics subjected to sol–gel treatments. J Appl Polym Sci 119:1961–1969

    Article  Google Scholar 

  • Alongi J, Ciobanu M, Malucelli G (2011) Sol–gel treatments for enhancing flame retardancy and thermal stability of cotton fabrics optimisation of the process and evaluation of the durability. Cellulose 18:167–177

    Article  CAS  Google Scholar 

  • Alongi J, Ciobanu M, Malucelli G (2012a) Sol–gel treatments on cotton fabrics for improving thermal and flame stability: effect of the structure of the alkoxysilane precursor. Carbohydr Polym 87:627–635

    Article  CAS  Google Scholar 

  • Alongi J, Ciobanu M, Malucelli G (2012b) Thermal stability, flame retardancy and mechanical properties of cotton fabrics treated with inorganic coatings synthesized through sol–gel processes. Carbohydr Polym 87:2093–2099

    Article  CAS  Google Scholar 

  • Alongi J, Camino G, Malucelli G (2013) Heating rate effect on char yield from cotton, poly(ethylene terephthalate) and blend fabrics. Carbohydr Polym 92:1327–1334

    Article  CAS  Google Scholar 

  • Chen X, Yang H, Liu Y, Zhou X, Lu H, Xin JH (2010) In-situ growth of silica nanoparticles on cellulose and application of hierarchical structure in biomimetic hydrophobicity. Cellulose 17:1103–1113

    Article  CAS  Google Scholar 

  • Davis R, El-Shafei A, Hauser P (2011) Use of atmospheric pressure plasma to confer durable water repellent functionality and antimicrobial functionality on cotton/polyester blend. Surf Coat Technol 205:4791–4797

    Article  CAS  Google Scholar 

  • Didane N, Giraud S, Devaux E, Lemort G, Capon G (2012) Thermal and fire resistance of fibrous materials made by PET containing flame retardant agents. Polym Degrad Stab 97:2545–2551

    Article  CAS  Google Scholar 

  • Ferrero F, Periolatto M (2013) Application of fluorinated compounds to cotton fabrics via sol–gel. Appl Surf Sci 275:201–207

    Article  CAS  Google Scholar 

  • Ghoranneviss M, Shahidi S (2014) Flame retardant properties of plasma pretreated/metallic salt loaded cotton fabric before and after direct dyeing. J Fusion Energy 33:119–124

    Article  CAS  Google Scholar 

  • Giraud S, Bourbigot S, Rochery M, Vroman I, Tighzert L, Delobel R (2002) Microencapsulation of phosphate: application to flame retarded coated cotton. Polym Degrad Stab 77:285–297

    Article  CAS  Google Scholar 

  • Giraud S, Bourbigot S, Rochery M, Vroman I, Tighzert L, Delobel R, Poutch F (2005) Flame retarded polyurea with microencapsulated ammonium phosphate for textile coating. Polym Degrad Stab 88:106–113

    Article  CAS  Google Scholar 

  • Herrera M, Matuschek G, Kettrup A (2001) Main products and kinetics of the thermal degradation of polyamides. Chemosphere 42:601–607

    Article  CAS  Google Scholar 

  • Hui PC-L et al (2013) Microencapsulation of traditional chinese herbs—pentaherbs extracts and potential application in healthcare textiles. Colloids Surf B Biointerfaces 156:161

    Google Scholar 

  • Ivanova NA, Zaretskaya AK (2010) Simple treatment of cotton textile to impart high water repellent properties. Appl Surf Sci 257:1800–1803

    Article  CAS  Google Scholar 

  • Jamekhorshid A, Sadrameli SM, Farid M (2014) A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew Sustain Energy Rev 31:531–542

    Article  CAS  Google Scholar 

  • Kan CW, Yuen CWM, Hung ON (2013) Improving the pilling property of knitted wool fabric with atmospheric pressure plasma treatment. Surf Coat Technol 228:S588–S592

    Article  CAS  Google Scholar 

  • Li R, Ye L, Mai Y-W (1997) Application of plasma technologies in fibre-reinforced polymer composites: a review of recent developments. Compos Part A 28A:73–86

    Article  CAS  Google Scholar 

  • Mahltig B, Bottcher H (2003) Modified silica sol coatings for water-repellent textiles. J Sol–Gel Sci Technol 27:43–52

    Article  CAS  Google Scholar 

  • Mahltig B, Textor T (2006) Combination of silica sol and dyes on textiles. J Sol–Gel Sci Technol 39:111–118

    Article  CAS  Google Scholar 

  • Mahltig B, Knittel D, Schollmeyer E, Bottcher H (2004) Incorporation of triarylmethane dyes into sol–gel matrices deposited on textiles. J Sol–Gel Sci Technol 31:293–297

    Article  CAS  Google Scholar 

  • Mahltig B, Audenaert F, Bottcher H (2005) Hydrophobic silica sol coatings on textiles—the influence of solvent and sol concentration. J Sol–Gel Sci Technol 34:103–109

    Article  CAS  Google Scholar 

  • Mondal S (2008) Phase change materials for smart textiles—an overview. Appl Therm Eng 28:1536–1550

    Article  CAS  Google Scholar 

  • Nelson G (2002) Application of microencapsulation in textiles. Int J Pharm 242:55–62

    Article  CAS  Google Scholar 

  • Philippart J-L, Sinturel C, Gardette J-L (1997) Influence of light intensity on the photooxidation of polypropylene. Polym Degrad Stab 58:261–268

    Article  CAS  Google Scholar 

  • Price D, Horrucks AR, Akalin M, Faroq AA (1997) Influence of flame retardants on the mechanism of pyrolysis of cotton (cellulose) fabrics in air. J Anal Appl Pyrolysis 40–41:511–524

    Article  Google Scholar 

  • Schueren LVD, Clerck KD, Brancatelli G, Rosace G, Damme EV, Vos WD (2012) Novel cellulose and polyamide halochromic textile sensors based on the encapsulation of Methyl Red into a sol–gel matrix. Sens Actuators B: Chem 162:27–34

    Article  Google Scholar 

  • Shahidi S, Ghoranneviss M, Sharif SD (2014) Effect of atmospheric pressure plasma treatment/followed by chitosan grafting on antifelting and dyeability of wool fabric. J Fusion Energy 33:177–183

    Article  CAS  Google Scholar 

  • Simoncic B, Tomšic B, Orel B, Jerman I (2010) Sol–gel technology for chemical modification of textiles. www.utwentenl/ctw/efsm//proceedings3.pdf

  • Simoncic B et al (2012) Multifunctional water and oil repellent and antimicrobial properties of finished cotton: influence of sol–gel finishing procedure. J Sol–Gel Sci Technol 61:340–354

    Article  CAS  Google Scholar 

  • Stanssens D, Abbeele HV, Vonck L, Schoukens G, Deconinck M, Samyn P (2011) Creating water-repellent and super-hydrophobic cellulose substrates by deposition of organic nanoparticles. Mater Lett 65:1781–1784

    Article  CAS  Google Scholar 

  • Tomsic B et al (2008) Sol–gel coating of cellulose fibres with antimicrobial and repellent properties. J Sol–Gel Sci Technol 47:44–57

    Article  CAS  Google Scholar 

  • Wei Q (2009) Surface modification of textiles. Woodhead, Textiles

    Book  Google Scholar 

  • Xue C-H, Chen J, Yin W, Jia S-T, Ma J-Z (2012) Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl Surf Sci 258:2468–2472

    Article  CAS  Google Scholar 

  • Yin Y, Wang C (2013) Water-repellent functional coatings through hybrid SiO2/HTEOS/CPTS sol on the surfaces of cellulose fibers. Colloids Surf Physicochem Eng Asp 417:120–125

    Article  CAS  Google Scholar 

  • Yin Y, Wang C, Wang C (2008) An evaluation of the dyeing behavior of sol–gel silica doped with direct dyes. J Sol–Gel Sci Technol 48:308–314

    Article  CAS  Google Scholar 

  • Yu X-W, Guan W-J, Li Y-Q, Guo T-J, Zhou J-D (2005) A biological treatment technique for wool textile. Braz Arch Biol Technol 48:675–680

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Damien Boyer or Said Gmouh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukhriss, A., Boyer, D., Hannache, H. et al. Sol–gel based water repellent coatings for textiles. Cellulose 22, 1415–1425 (2015). https://doi.org/10.1007/s10570-015-0565-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0565-7

Keywords

Navigation