Skip to main content
Log in

Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The effect of ionic strength on the rheology and microstructure of Cellulose nanocrystals (CNC) aqueous suspensions are studied over a broad range of CNC (3–15 wt%) and NaCl concentrations (0–15 mM), using polarized optical microscopy combined with rheometry. The CNC suspensions are isotropic at low concentration and form chiral nematic liquid crystalline structure above a first critical concentration and gel above a second critical one. It has been shown that for isotropic CNC suspensions, increasing the ionic strength of the system up to 5 mM NaCl concentration weakens the electro-viscous effects and thus reduces the viscosity of these suspensions. For biphasic samples, which contain chiral nematic liquid crystal domains, increasing the ionic strength up to 5 mM NaCl concentration decreases the size of the chiral nematic domains, and leads the viscosity of the samples at low shear rates to increase. On the other hand, at high shear rates, where all the ordered domains are broken, the viscosity decreases with NaCl addition. For gels, the addition of NaCl up to 5 mM weakens the gel structure and decreases the viscosity. Further addition of NaCl (10 and 15 mM NaCl concentrations) results in extensive aggregation and de-stabilizes the CNC suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Araki J, Kuga S (2001) Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir 17:4493–4496

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45:258–261

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (2000) Birefringent glassy phase of a cellulose microcrystal suspension. Langmuir 16:2413–2415

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054

    Article  CAS  Google Scholar 

  • Bercea M, Navard P (2000) Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33:6011–6016

    Article  CAS  Google Scholar 

  • Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf A Physicochem Eng Asp 377:297–303

    Article  CAS  Google Scholar 

  • Dong XM, Gray DG (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13:2404–2409

    Article  CAS  Google Scholar 

  • Dong XM, Kimura T, Revol JF, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082

    Article  CAS  Google Scholar 

  • Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  • Gonzalez-Labrada E, Gray D (2012) Viscosity measurements of dilute aqueous suspensions of cellulose nanocrystals using a rolling ball viscometer. Cellulose 19:1557–1565

    Article  CAS  Google Scholar 

  • Hamad WY, Hu TQ (2010) Structure-process-yield interrelation in nanocrystalline cellulose extraction. Can J Chem Eng 88(3):392–402

    CAS  Google Scholar 

  • Hirai A, Inui D, Horii F, Tsuji M (2009) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25:497–502

    Article  CAS  Google Scholar 

  • Liu D, Chen X, Yue Y, Chen M, Wu Q (2011) Structure and rheology of nanocrystalline cellulose. Carbohydrate Polymer 84:316–322

    Article  CAS  Google Scholar 

  • Liu D, Li J, Sun F, Xiao R, Guo Y, Song J (2014) Liquid crystal microphase seperation of cellulose nanocrystals in wet-spun PVA composite fibers. RSC Adv 4:30784–30789

    Article  CAS  Google Scholar 

  • Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632–633

    Article  CAS  Google Scholar 

  • Marchessault RH, Morehead FF, Koch MJ (1961) Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape. J Colloid Sci 16:327–344

    Article  CAS  Google Scholar 

  • Odijk T (1986) Theory of lyotropic liquid crystals. Macromolecules 19:2313–2329

    Article  CAS  Google Scholar 

  • Onogi S, Asada T (1980) In rheology and rheo-optics of polymer liquid crystals. In: Astarita G, Marrucci G, Nicolais L (eds) Proceedings of the eighth international congress on rheology. Plenum Press, Napoles, pp 126–136

    Google Scholar 

  • Onsager L (1949) The effect of shape on the interactions of colloid particles. Ann N Y Acad Sci 51:627–659

    Article  CAS  Google Scholar 

  • Orts WJ, Godbout L, Marchessault RH, Revol JF (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study. Macromolecules 31:5717–5725

    Article  CAS  Google Scholar 

  • Ranby BG (1951) The colloidal properties of cellulose micelles. Discuss. Faraday Soc 11: 158–164, discussion 208-213

  • Revol JF, Marchessault RH (1994) In vitro chiral nematic ordering of chitin crystallites. Int J Biol Macromol 15:329–335

    Article  Google Scholar 

  • Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172

    Article  CAS  Google Scholar 

  • Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28:17124–17133

    Article  CAS  Google Scholar 

  • Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2013) Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions. Rheol Acta 52:741–751

    Article  Google Scholar 

  • Tatsumi D, Ishioka S, Matsumoto T (1999) Effect of particle and salt concentrations on the rheological properties of cellulose fibrous suspensions. Nihon Reoroji Gakkaishi 27:243–248

    Article  CAS  Google Scholar 

  • Urena-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44:8990–8998

    Article  CAS  Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J of Rheology 30(2):367–382

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge NSERC and FPInnovations for financial support under grant CRD-379851-2008.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Y. Hamad or S. G. Hatzikiriakos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiei-Sabet, S., Hamad, W.Y. & Hatzikiriakos, S.G. Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 21, 3347–3359 (2014). https://doi.org/10.1007/s10570-014-0407-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0407-z

Keywords

Navigation