Skip to main content
Log in

Nonlinear viscoelastic characterization of charged cellulose nanocrystal network structure in the presence of salt in aqueous media

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The change in ionic strength of cellulose nanocrystal (CNC) suspensions is shown to contribute to a respective change in colloidal behavior, such as stiffness and fractal gelation. In this study, dynamic colloidal behavior and stability of aqueous CNC suspensions and their correlation with nonlinear viscoelastic properties of the CNC gel structures in the presence of different concentrations of sodium chloride (NaCl) salt were investigated. The microstructure of CNC/salt suspensions/gels were investigated with a wide range of characterization technique. To obtain further insight into the network structure of CNC/salt systems, for the first time, nonlinear rheology of the suspensions/gels was analyzed to correlate macro-mechanical viscoelastic response of the CNC/salt aqueous systems to structural changes as a response to strain. The intra-cycle viscoelasticity, explained utilizing qualitative Lissajous–Bowditch plots and quantitative nonlinear parameters, demonstrates a strong dependence of the nonlinear response of the samples to salt concentration, CNC concentration, and frequency of deformation. Higher intra-cycle nonlinearity was observed upon increasing the salt loading.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aliabadian E, Sadeghi S, Kamkar M, Chen Z, Sundararaj U (2018) Rheology of fumed silica nanoparticles/partially hydrolyzed polyacrylamide aqueous solutions under small and large amplitude oscillatory shear deformations. J Rheol 62:1197–1216

    Article  CAS  Google Scholar 

  • Aliabadian E, Kamkar M, Chen Z, Sundararaj U (2019) Prevention of network destruction of partially hydrolyzed polyacrylamide (HPAM): Effects of salt, temperature, and fumed silica nanoparticles. Phys Fluids 31:013104

    Article  CAS  Google Scholar 

  • Araki J (2013) Electrostatic or steric preparations and characterizations of well dispersed systems containing rod-like nanowhiskers of crystalline polysaccharides. Soft Matter 9:4125–4141

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6:1048–1054

    Article  CAS  Google Scholar 

  • Benavides EEU (2011) Cellulose nanocrystals properties and applications in renewable nanocomposites. Clemson University, Clemson

    Google Scholar 

  • Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf A Physicochem Eng Aspects 377:297–303

    Article  CAS  Google Scholar 

  • Chau M et al (2015) Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals. Biomacromol 16:2455–2462

    Article  CAS  Google Scholar 

  • Chaudhuri O et al (2016) Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15:326

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Xu C, Huang J, Wu D, Lv Q (2017) Rheological properties of nanocrystalline cellulose suspensions. Carbohydr Polym 157:303–310

    Article  CAS  PubMed  Google Scholar 

  • Cherhal F, Cousin F, Capron I (2015) Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering. Langmuir 31:5596–5602

    Article  CAS  PubMed  Google Scholar 

  • Cho KS, Hyun K, Ahn KH, Lee SJ (2005) A geometrical interpretation of large amplitude oscillatory shear response. J Rheol 49:747–758

    Article  CAS  Google Scholar 

  • Conti M, Meerson B, Sasorov PV (1998) Breakdown of scale invariance in the phase ordering of fractal clusters. Phys Rev Lett 80:4693

    Article  CAS  Google Scholar 

  • Cowin SC (2001) Bone mechanics handbook. CRC Press, Boca Raton

    Book  Google Scholar 

  • de Souza Lima MM, Borsali R (2002) Static and dynamic light scattering from polyelectrolyte microcrystal cellulose. Langmuir 18:992–996

    Article  CAS  Google Scholar 

  • Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Putaux J-L, Heux L (2009) Self-assembling and chiral nematic properties of organophilic cellulose nanocrystals. J Phys Chem B 113:11069–11075

    Article  CAS  PubMed  Google Scholar 

  • Ewoldt RH, Hosoi A, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52:1427–1458

    Article  CAS  Google Scholar 

  • Ewoldt RH, Winter P, Maxey J, McKinley GH (2010) Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheol Acta 49:191–212

    Article  CAS  Google Scholar 

  • Giacomin AJ, Dealy JM (1993) Large-amplitude oscillatory shear. In: Collyer AA (ed) Techniques in rheological measurement. Springer, Berlin, pp 99–121

    Chapter  Google Scholar 

  • Goudoulas TB, Germann N (2019a) Nonlinear rheological behavior of gelatin gels: In situ gels and individual gel layers filled with hard particles. J Colloid Interf Sci 556:1–11

    Article  CAS  Google Scholar 

  • Goudoulas TB, Germann N (2019b) Nonlinear rheological behavior of gelatin gels: In situ gels and individual layers. J Colloid Interf Sci 553:746–757

    Article  CAS  Google Scholar 

  • Groenewold J, Zhang T, Kegel WK (2011) Electrophoresis in charge-stabilized colloidal cluster phases. J Phys Chem B 115:7264–7267

    Article  CAS  PubMed  Google Scholar 

  • Hyun K, Kim W (2011) A new non-linear parameter Q from FT-Rheology under nonlinear dynamic oscillatory shear for polymer melts system. Korea-Australia Rheol J 23:227–235

    Article  Google Scholar 

  • Hyun K et al (2011) A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36:1697–1753

    Article  CAS  Google Scholar 

  • Israelachvili J (2011) Intermolecular and surface forces, 3rd edn. Academic, Burlington

    Google Scholar 

  • Kamkar M (2020) Large amplitude oscillatory shear flow: microstructural assessment of polymer nanocomposites, hydrogels, and interfaces. http://hdl.handle.net/1880/111737

  • Kamkar M, Aliabadian E, Shayesteh Zeraati A, Sundararaj U (2018) Application of nonlinear rheology to assess the effect of secondary nanofiller on network structure of hybrid polymer nanocomposites. Phys Fluids 30:023102

    Article  CAS  Google Scholar 

  • Kamkar M, Sadeghi S, Arjmand M, Sundararaj U (2019) Structural Characterization of CVD Custom-Synthesized Carbon Nanotube/Polymer Nanocomposites in Large-Amplitude Oscillatory Shear (LAOS) Mode: Effect of Dispersion Characteristics in Confined Geometries Macromolecules

  • Kamkar M et al (2020) The key role of processing in tuning nonlinear viscoelastic properties and microwave absorption in CNT-based polymer nanocomposites. Mater Today Commun 24:101010

    Article  CAS  Google Scholar 

  • Laurati M, Egelhaaf S, Petekidis G (2011) Nonlinear rheology of colloidal gels with intermediate volume fraction. J Rheol 55:673–706

    Article  CAS  Google Scholar 

  • Lenfant G, Heuzey M-C, van de Ven TG, Carreau PJ (2017) A comparative study of ECNC and CNC suspensions: effect of salt on rheological properties. Rheol Acta 56:51–62

    Article  CAS  Google Scholar 

  • Lewis L, Derakhshandeh M, Hatzikiriakos SG, Hamad WY, MacLachlan MJ (2016) Hydrothermal gelation of aqueous cellulose nanocrystal suspensions. Biomacromol 17:2747–2754

    Article  CAS  Google Scholar 

  • Lv H, Li L, Sun M, Zhang Y, Chen L, Rong Y, Li Y (2015) Mechanism of regulation of stem cell differentiation by matrix stiffness. Stem Cell Res Therapy 6:103

    Article  CAS  Google Scholar 

  • Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci, Part B: Polym Phys 52:791–806

    Article  CAS  Google Scholar 

  • Moud AA, Arjmand M, Yan N, Nezhad AS, Hejazi SH (2018) Colloidal behavior of cellulose nanocrystals in presence of sodium chloride. Chem Select 3:4969–4978

    CAS  Google Scholar 

  • Moud AA, Arjmand M, Liu J, Yang Y, Sanati-Nezhad A, Hejazi SH (2019) Cellulose nanocrystal structure in the presence of salts. Cellulose 26(18):9387–9401

    CAS  Google Scholar 

  • Oguzlu H, Danumah C, Boluk Y (2017) Colloidal behavior of aqueous cellulose nanocrystal suspensions Current opinion in colloid & interface. Science 29:46–56

    CAS  Google Scholar 

  • Peddireddy KR, Capron I, Nicolai T, Benyahia L (2016) Gelation kinetics and network structure of cellulose nanocrystals in aqueous solution. Biomacromol 17:3298–3304

    Article  CAS  Google Scholar 

  • Revol J-F (1982) On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydr Polym 2:123–134

    Article  CAS  Google Scholar 

  • Rogers SA, Erwin BM, Vlassopoulos D, Cloitre M (2011) A sequence of physical processes determined and quantified in LAOS: Application to a yield stress fluid. J Rheol 55:435–458

    Article  CAS  Google Scholar 

  • Saengow C, Giacomin AJ (2019) Review of nonlinear oscillatory shear flow notations and presentations: Polymeric liquids Current opinion in colloid & interface science

  • Salehiyan R, Yoo Y, Choi WJ, Hyun K (2014) Characterization of morphologies of compatibilized polypropylene/polystyrene blends with nanoparticles via nonlinear rheological properties from FT-rheology. Macromolecules 47:4066–4076

    Article  CAS  Google Scholar 

  • Salehiyan R, Song HY, Choi WJ, Hyun K (2015) Characterization of effects of silica nanoparticles on (80/20) PP/PS blends via nonlinear rheological properties from Fourier transform rheology. Macromolecules 48:4669–4679

    Article  CAS  Google Scholar 

  • Shafiei-Sabet S, Hamad W, Hatzikiriakos S (2014) Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 21:3347–3359

    Article  CAS  Google Scholar 

  • Shih W-H, Shih WY, Kim S-I, Liu J, Aksay IA (1990) Scaling behavior of the elastic properties of colloidal gels. Phys Rev A 42:4772

    Article  CAS  PubMed  Google Scholar 

  • Vedadghavami A, Minooei F, Mohammadi MH, Khetani S, Kolahchi AR, Mashayekhan S, Sanati-Nezhad A (2017) Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater 62:42–63

    Article  CAS  PubMed  Google Scholar 

  • Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    Article  PubMed  CAS  Google Scholar 

  • Wen JH et al (2014) Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater 13:979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm M, Reinheimer P, Ortseifer M (1999) High sensitivity Fourier-transform rheology. Rheol Acta 38:349–356

    Article  CAS  Google Scholar 

  • Wu H, Morbidelli M (2001) A model relating structure of colloidal gels to their elastic properties. Langmuir 17:1030–1036

    Article  CAS  Google Scholar 

  • Zaccone A, Wu H, Del Gado E (2009) Elasticity of arrested short-ranged attractive colloids: Homogeneous and heterogeneous glasses. Phys Rev Lett 103:208301

    Article  PubMed  CAS  Google Scholar 

  • Zhong L, Fu S, Peng X, Zhan H, Sun R (2012) Colloidal stability of negatively charged cellulose nanocrystalline in aqueous systems. Carbohydr Polym 90:644–649

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial assistance from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant 05503-2015, Alberta Innovates BioSolution’s CNC Challenge II and III, University of Calgary Global Research Initiative in Unconventional Hydrocarbon Resources-Beijing Site, Kerui-MITACS Accelerate Research Fund Application Ref. IT09328. The authors also gratefully acknowledge infrastructure funding from Canadian Foundation for Innovation (CFI) CFI LOF Project# 30100.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amir Sanati-Nezhad, Seyed Hossein Hejazi or Uttandaraman Sundararaj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi Moud, A., Kamkar, M., Sanati-Nezhad, A. et al. Nonlinear viscoelastic characterization of charged cellulose nanocrystal network structure in the presence of salt in aqueous media. Cellulose 27, 5729–5743 (2020). https://doi.org/10.1007/s10570-020-03166-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03166-x

Keywords

Navigation