Skip to main content
Log in

Carboxymethylated nanofibrillated cellulose: effect of monovalent electrolytes on the rheological properties

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The effect of the ionic strength on the properties of a carboxymethylated nanofibrillated cellulose (NFC) system was investigated through rheological studies. It was shown that homogenization of pulp suspensions containing a high amount of a monovalent electrolyte leads to the production of NFC systems displaying a lower magnitude in the rheological response as compared with systems prepared at lower ionic strengths conditions. It was further shown that increasing the ionic strength of NFC suspensions after their manufacturing also results in a lowering of the rheological response. The decreased rheological response in the former case was postulated to be caused by a lowering of the delamination deficiency of the homogenization process, due to decreased swelling of the carboxymethylated pulp, caused by the screening of the charges. In the latter case (post-addition of the electrolyte), the lowering of the rheological response was postulated to be due to the compression of the electrostatic double layer, when the electrostatic repulsion between the charged fibrils diminished in the presence of the electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. κ is the inverse of the Debye length; d is the diameter of the investigated nanofibrils.

References

  • Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C, Doublier JL (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80(3):677–686. doi:10.1016/j.carbpol.2009.11.045

    Article  CAS  Google Scholar 

  • Aulin C, Karabulut E, Tran A, Wågberg L, Lindström T (2013) Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties. ACS Appl Mater Interfaces 5(15):7352–7359. doi:10.1021/am401700n

    Article  CAS  Google Scholar 

  • Boluk Y, Zhao L, Incani V (2012) Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal dods. Langmuir 28(14):6114–6123. doi:10.1021/la2035449

    Article  CAS  Google Scholar 

  • Carlsson G, Kolseth P, Lindström T (1983) Polyelectrolytic swelling behaviour of chlorite delignified spruce wood fibers. Wood Sci Technol 17:69–73

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemens W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogio M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Matter Sci 45(1):1–33

    Article  CAS  Google Scholar 

  • Fall AB, Lindström SB, Sprakel J, Wågberg L (2013) A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation. Soft Matter 9:1852–1863. doi:10.1039/c2sm27223g

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165. doi:10.1021/bm801065u

    Article  CAS  Google Scholar 

  • Hamedi M, Karabulut E, Marais A, Herland A, Nyström G, Wågberg L (2013) Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. Angew Chem Int Ed 52(46):12038–12042

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Iotti M, Gregersen OW, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19:137–145. doi:10.1007/s10924-010-0248-2

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85. doi:10.1039/c0nr00583e

    Article  CAS  Google Scholar 

  • Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofibre network characteristics. Biomacromolecules 9:1022–1026

    Article  CAS  Google Scholar 

  • Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10(9):2571–2576

    Article  CAS  Google Scholar 

  • Jowkarderis L, van de Ven TM (2014) Intrinsic viscosity of aqueous suspensions of cellulose nanofibrils. Cellulose 1–7. doi:10.1007/s10570-014-0292-5

  • Karppinen A, Vesterinen A-H, Saarinen T, Pietikäinen P, Seppälä J (2011) Effect of cationic polymethacrylates on the rheology and flocculation of microfibrillated cellulose. Cellulose 18(6):1381–1390. doi:10.1007/s10570-011-9597-9

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466. doi:10.1002/anie.201001273

    Article  CAS  Google Scholar 

  • Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15(3):425–433. doi:10.1007/s10570-007-9184-2

    Article  CAS  Google Scholar 

  • Lindström T (1990) Chemical factors affecting the behaviour of fibres during papermaking. Nord Pulp Pap Res J 7(4):181–192

    Article  Google Scholar 

  • Lindström T, Aulin C, Naderi A, Ankerfors M (2014) Microfibrillated cellulose. In: Encyclopedia of polymer science and technology. Wiley, pp 1–34. doi:10.1002/0471440264.pst614

  • Lowys MP, Desbrieres J, Rinaudo M (2001) Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives. Food Hydrocoll 15:25–32. doi:10.1016/s0268-005x(00)00046-1

    Article  CAS  Google Scholar 

  • Lucian LA, Rojas OJ (2009) The nanoscience and technology of renewable biomaterials. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Moberg T, Rigdahl M, Stading M, Bragd EL (2014) Extensional viscosity of microfibrillated cellulose suspensions. Carbohydr Polym 102:409–412. doi:10.1016/j.carbpol.2013.11.041

    Article  CAS  Google Scholar 

  • Naderi A, Lindström T, Pettersson T (2014a) The state of carboxymethylated nanofibrils after homogenization-aided dilution from concentrated suspensions: a rheological perspective. Cellulose 21(4):2357–2368. doi:10.1007/s10570-014-0329-9

    Article  CAS  Google Scholar 

  • Naderi A, Lindström T, Sundström J (2014b) Carboxymethylated nanofibrillated cellulose: rheological studies. Cellulose 21(3):1561–1571. doi:10.1007/s10570-014-0192-8

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941. doi:10.1021/bm061215p

    Article  Google Scholar 

  • Saarikoski E, Saarinen T, Salmela J, Seppälä J (2012) Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behaviour. Cellulose 19(3):647–659. doi:10.1007/s10570-012-9661-0

    Article  CAS  Google Scholar 

  • Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7(19):8804–8809. doi:10.1039/c1sm06050c

    Article  CAS  Google Scholar 

  • Shogren RL, Peterson SC, Evans KO, Kenar JA (2011) Preparation and characterization of cellulose gels from corn cobs. Carbohydr Polym 86:1351–1357. doi:10.1016/j.carbpol.2011.06.035

    Article  CAS  Google Scholar 

  • Siquiera G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765

    Article  Google Scholar 

  • Tanaka R, Saito T, Ishii D, Isogai A (2014) Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 1–9. doi:10.1007/s10570-014-0196-4

  • Tatsumi D, Ishioka S, Matsumoto T (1999) Effect of particle and salt concentrations on the rheological properties of cellulose fibrous suspensions. J Soc Rheol Jpn 27:243–248. doi:10.1678/rheology.27.243

    Article  CAS  Google Scholar 

  • Tatsumi D, Ishioka S, Matsumoto T (2002) Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions. J Soc Rheol Jpn 30:27–32

    Article  CAS  Google Scholar 

  • Vesterinen A-H, Myllytie P, Laine J, Seppaelae J (2010) The effect of water-soluble polymers on rheology of microfibrillar cellulose suspension and dynamic mechanical properties of paper sheet. J Appl Polym Sci 116(5):2990–2997. doi:10.1002/app.31832

    CAS  Google Scholar 

  • Wågberg L, Winter L, Ödberg L, Lindström T (1987) On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials. Colloids Surf 27:163–173

    Article  Google Scholar 

Download references

Acknowledgments

Åsa Engström is thanked for her competent supporting work. Billerud-Korsnäs, Borregaard, De la Rue, Hansol Holmen, Kemira, Korsnäs, Metsä Group, Stora Enso, Södra, Evergreen Packaging and UPM are acknowledged for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Lindström.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, A., Lindström, T. Carboxymethylated nanofibrillated cellulose: effect of monovalent electrolytes on the rheological properties. Cellulose 21, 3507–3514 (2014). https://doi.org/10.1007/s10570-014-0394-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0394-0

Keywords

Navigation