Skip to main content
Log in

Preparation and separation characteristics of polyelectrolyte complex membranes containing sulfated carboxymethyl cellulose for water–ethanol mixtures at low pH

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Novel polyelectrolyte complexes based on sulfated carboxymethyl cellulose and chitosan were prepared, containing strongly charged (sulfate (OSO3)) and weakly charged (carboxylate (COO)) groups (SPECs). SPEC homogeneous membranes (SPECMs) for the pervaporation dehydration of ethanol–water mixtures were investigated. The chemical structures and compositions of SPECMs were characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectra. The swelling behavior and separation performance of SPECMs in low pH feed were evaluated. It was found that the SPECMs containing OSO3 groups were resistant to acidic feeds and showed very good separation performance even in low pH feed. For instance, the water content in permeate for SPECM-0.35 reached as high as 95.8 wt%, which was much higher than the 60 wt% for SPECM-0 in the dehydration of water–ethanol mixtures with pH 2. The result was attributed to the interplay between the stable complexation formed by OSO3 groups and the improved ionization degree of COO groups in SPECMs. Moreover, the SPECMs maintained their operation stability against acidic feeds. The SPECMs could find considerable potential application in the pervaporation dehydration of acidic feeds, especially for enhancing the conversion of ester condensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

CMC:

Carboxymethyl cellulose

CS:

Chitosan

COO :

Carboxylate groups

COOH:

Carboxyl groups

SCMC:

Sulfated carboxymethyl cellulose

OSO3 :

Sulfate

ESD:

Equilibrium swelling degree

α :

Separation factor

α s :

Sorption selectivity

α d :

Diffusion selectivity

J :

Total flux (g m−2 h)

SCMC-X:

SCMC with X ratio of OSO3Na to COONa groups

PECs:

Polyelectrolyte complexes

SPECs:

PECs containing OSO3 groups

SPEC-Y:

SPECs with Y molar percent OSO3 groups

SPEC-0:

SPEC containing no OSO3 groups

PECMs:

Polyelectrolyte complexes membranes

SPECMs:

PECMs containing OSO3 groups

SPECM-Y:

SPECM with Y molar percent OSO3 groups

SPECM-0:

SPECM containing no OSO3 groups

References

  • Aarne N, Kontturi E, Laine J (2012) Carboxymethyl cellulose on a fiber substrate: the interactions with cationic polyelectrolytes. Cellulose 19:2217–2231

    Article  CAS  Google Scholar 

  • Bhat SD, Aminabhavi TM (2007) Pervaporation separation using sodium alginate and its modified membranes—a review. Sep Purif Rev 36:203–229

    Article  CAS  Google Scholar 

  • Bhat SD, Aminabhavi TM (2009) Pervaporation-aided dehydration and esterification of acetic acid with ethanol using 4A zeolite-filled cross-linked sodium alginate-mixed matrix membranes. J Appl Polym Sci 113:157–168

    Article  CAS  Google Scholar 

  • Bolto B, Tran T, Hoang M, Xie ZL (2009) Crosslinked poly(vinyl alcohol) membranes. Prog Polym Sci 34:969–981

    Article  CAS  Google Scholar 

  • Bolto B, Hoang M, Xie ZL (2011) A review of membrane selection for the dehydration of aqueous ethanol by pervaporation. Chem Eng Process 50:227–235

    Article  CAS  Google Scholar 

  • Budd PM, Ricardo NMPS, Jafar JJ, Stephenson B, Hughes R (2004) Zeolite/polyelectrolyte multilayer pervaporation membranes for enhanced reaction yield. Ind Eng Chem Res 43:1863–1867

    Article  CAS  Google Scholar 

  • Cai T, Yang Z, Li H, Yang H, Li A, Cheng R (2013) Effect of hydrolysis degree of hydrolyzed polyacrylamide grafted carboxymethyl cellulose on dye removal efficiency. Cellulose 20:2065–2614

    Article  Google Scholar 

  • Chapman PD, Oliveira T, Livingston AG, Li K (2008) Membranes for the dehydration of solvents by pervaporation. J Membr Sci 318:5–37

    Article  CAS  Google Scholar 

  • Choi J, Rubner MF (2005) Influence of the degree of ionization on weak polyelectrolyte multilayer assembly. Macromolecules 38:116–124

    Article  CAS  Google Scholar 

  • Chovau S, Gaykawad S, Straathof AJJ, Bruggen B (2011) Influence of fermentation by-products on the purification of ethanol from water. Bioresour Technol 102:1669–1674

    Article  CAS  Google Scholar 

  • Ding JW, Zhang MH, Jiang ZY, Li YF, Ma J, Zhao J (2012) Enhancing the permselectivity of pervaporation membrane by constructing the active layer through alternative self-assembly and spin-coating. J Membr Sci 390–391:218–225

    Article  Google Scholar 

  • Dubas ST, Schlenoff JB (2001a) Polyelectrolyte multilayers containing a weak polyacid: construction and deconstruction. Macromolecules 34:3736–3740

    Article  CAS  Google Scholar 

  • Dubas ST, Schlenoff JB (2001b) Swelling and smoothing of polyelectrolyte multi-layers by salt. Langmuir 17:7725–7727

    Article  CAS  Google Scholar 

  • Feng X, Huang RYM (1997) Liquid separation by membrane pervaporation: a review. Ind Eng Chem Res 36:1048–1066

    Article  CAS  Google Scholar 

  • Gebhardt JE, Furstenau DW (1983) Adsorption of polyacrylic acid at oxide/water interfaces. Colloids Surf 7:221–231

    Article  CAS  Google Scholar 

  • Gimenes ML, Liu L, Feng X (2007) Sericin/poly (vinyl alcohol) blend membranes for pervaporation separation of ethanol/water mixtures. J Membr Sci 295:71–79

    Article  CAS  Google Scholar 

  • Heinze T, Pfeiffer K (1999) Studies on the synthesis and characterization of carboxymethylcellulose. Angew Makromol Chem 266:37–45

    Article  CAS  Google Scholar 

  • Huang CH, Wang CF, Don TM, Chiu WY (2013) Preparation of pH- and thermo-sensitive chitosan PNIPAAm core-shell nanoparticles and evaluation as drug carriers. Cellulose 20:1791–1805

    Article  CAS  Google Scholar 

  • Jang Y, Akgum B, Kim H, Satija S, Char K (2012) Controlled release from model blend multilayer films containing mixtures of strong and weak polyelectrolytes. Macromolecules 45:3542–3549

    Article  CAS  Google Scholar 

  • Jiang LY, Wang Y, Chung TS, Qiao XY, Lai JY (2009) Polyimides membranes for pervaporation and biofuels separation. Prog Polym Sci 34:1135–1160

    Article  CAS  Google Scholar 

  • Jin HT, An QF, Zhao Q, Qian JW, Zhu MH (2010) Pervaporation dehydration of ethanol by using polyelectrolyte complex membranes based on poly (N-ethyl-4-vinylpyridinium bromide) and sodium carboxymethyl cellulose. J Membr Sci 347:183–192

    Article  CAS  Google Scholar 

  • Kim SG, Ahn HR, Lee KH (2009) Pervaporation characteristics of polyelectrolyte complex gel membranes based on anionic polysaccharides having a chelating structure. Curr Appl Phys 9:e42–e46

    Article  Google Scholar 

  • Krasemann L, Tieke B (2000) Highly efficient composite membranes for ethanol-water pervaporation. Chem Eng Technol 23:211–213

    Article  CAS  Google Scholar 

  • Liu YL, Hsu CY, Su YH, Lai JY (2005) Chitosan-silica complex membranes from sulfonic acid functionalized silica nanoparticles for pervaporation dehydration of ethanol–water solutions. Biomacromolecules 6:368–373

    Article  CAS  Google Scholar 

  • Ma J, Zhang M, Lu L, Yin X, Chen J, Jiang Z (2009) Intensifying esterification reaction between lactic acid and ethanol by pervaporation dehydration using chitosan–TEOS hybrid membranes. Chem Eng J 155:800–809

    Article  CAS  Google Scholar 

  • Magalad VT, Gokavi GS, Nadagouda MN, Aminabhavi TM (2011) Pervaporation separation of water ethanol mixtures using organic–inorganic nanocomposite membranes. J Phys Chem C 115:14731–14744

    Article  CAS  Google Scholar 

  • Magalad VT, Gokavi GS, Ranganathaiah C, Burshe MH, Han C, Dionysiou DD, Nadagouda MN, Aminabhavi TM (2013) Polymeric blend nanocomposite membranes for ethanol dehydration—effect of morphology and membrane–solvent interactions. J Membr Sci 430:321–329

    Article  CAS  Google Scholar 

  • Moo YD, Oh BK, Lee YM (1992) Preparation of water-acetic through polyimide membranes form 3,3′,4,4′-benzophenone teracarboxylic dianhydride and 4,4′-oxydianiline. Polym Bull 29:431–438

    Article  Google Scholar 

  • Nagase T, Kiyozumi Y, Hasegawa Y, Inoue T, Inoue T, Ikeda T, Mizukami F (2007) Dehydration of concentrated acetic acid solutions by pervaporation using novel MER zeolite membranes. Chem Lett 36:594–595

    Article  CAS  Google Scholar 

  • Nam SY, Lee YM (1997) Pervaporation and properties of chitosan–poly (acrylic acid) complex membranes. J Membr Sci 135:161–171

    Article  CAS  Google Scholar 

  • Scharnagl N, Peinemann KV, Wenzlaff A, Schwarz HH, Behling RD (1996) Dehydration of organic compounds with SYMPLEX composite membranes. J Membr Sci 113:1–5

    Article  CAS  Google Scholar 

  • Schwarz HH, Lukáš J, Richau K (2003) Surface and permeability properties of membranes from polyelectrolyte complexes and polyelectrolyte surfactant complexes. J Membr Sci 218:1–9

    Article  CAS  Google Scholar 

  • Shao P, Huang RYM (2007) Polymeric membrane pervaporation. J Membr Sci 287:162–179

    Article  CAS  Google Scholar 

  • Shi GM, Chen H, Jean YC, Chung TS (2013) Sorption, swelling, and free volume of polybenzimidazole (PBI) and PBI/zeolitic imidazolate framework (ZIF-8) nano-composite membranes for pervaporation. Polymer 54:774–783

    Article  CAS  Google Scholar 

  • Shih CM, Shieh YT, Twu YK (2009) Preparation and characterization of cellulose/chitosan blend films. Carbohydr Polym 78:169–174

    Article  CAS  Google Scholar 

  • Suhas DP, Raghu AV, Jeong HM, Aminabhavi TM (2013) Graphene-loaded sodium alginate nanocomposite membranes with enhanced isopropanol dehydration performance via a pervaporation technique. RSC Adv 3:17120–17130

    Article  CAS  Google Scholar 

  • Sui ZJ, Jaber J, Schlenoff JB (2006) Polyelectrolyte complexes with pH-tunable solubility. Macromolecules 39:81450–88152

    Article  Google Scholar 

  • Sukhishvili SA, Kharlampieva E, Izumrudov V (2006) Where polyelectrolyte multilayers and polyelectrolyte complexes meet. Macromolecules 39:8873–8881

    Article  CAS  Google Scholar 

  • Thünemann AF, Müller M, Dautzenberg H, Joanny JF, Löwen H (2004) Polyelectrolyte complexes. Adv Polym Sci 166:113–171

    Article  Google Scholar 

  • Tjipto E, Quinn JF, Caruso F (2005) Assembly of multilayer film from polyelectrolytes containing weak and strong acid moieties. Langmuir 21:8785–8792

    Article  CAS  Google Scholar 

  • Uragami T, Tuskamoto K, Miyata T, Heinze T (1999) Permeation and separation characteristics for benzene/cyclohexane mixtures through tosylcellulose membranes in pervaporation. Cellulose 6:221–231

    Article  CAS  Google Scholar 

  • Uragami T, Ohshima T, Miyata T (2003) Removal of benzene from an aqueous solution of dilute benzene by various crosslinked poly (dimethylsiloxane) membranes during pervaporation. Macromolecules 36:9430–9436

    Article  CAS  Google Scholar 

  • Veerapur RS, Gudasi KB, Patil MB, Babu VR, Bhat SD, Sairam M, Aminabhavi TM (2006) Sodium alginate–poly(hydroxyethylmethacrylate) interpenetrating polymeric network membranes for the pervaporation dehydration of ethanol and tetrahydrofuran. J Appl Polym Sci 101:3324–3329

    Article  CAS  Google Scholar 

  • Vogt S, Klemm D, Heinze T (1996) Effective esterification of carboxymethyl cellulose in a new non-aqueous swelling system. Polym Bull 36:549–555

    Article  CAS  Google Scholar 

  • Wang XS, An QF, Zhao Q, Lee KR, Qian JW, Gao CJ (2012) Preparation and pervaporation characteristics of novel polyelectrolyte complex membranes containing dual anionic groups. J Membr Sci 415–416:145–152

    Article  Google Scholar 

  • Wang XS, An QF, Zhao Q, Lee KR, Qian JW, Gao CJ (2013) Homogenous polyelectrolyte complex membranes incorporated with strong ion-pairs with high pervaporation performance for dehydration of ethanol. J Membr Sci 435:71–79

    Article  CAS  Google Scholar 

  • Xu GF, Zhu WP (2011) Pervaporation for separating benzene/cyclohexane mixture by P (AA-MA) copolymer membranes. Chin J Polym Sci 292:88–295

    Google Scholar 

  • Yang G, Zhang L, Peng T, Zhong W (2000) Effects of Ca2+ bridge crosslinking on structure and pervaporation of cellulose/alginate blend membranes. J Membr Sci 175:53–60

    Article  CAS  Google Scholar 

  • You J, Hu H, Zhou J (2013) Synthesis, structure and solution properties of the novel polyampholytes based on cellulose. Cellullose 20:1175–1185

    Article  CAS  Google Scholar 

  • Zhang G, Ruan Z, Ji S, Liu Z (2010) Construction of metal–ligand-coordinated multilayers and their selective separation behavior. Langmuir 26:4782–4789

    Article  CAS  Google Scholar 

  • Zhang QG, Hu WW, Zhu AM, Liu QL (2013) UV-crosslinked chitosan/polyvinylpyrrolidone blend membranes for pervaporation. RSC Adv 3:1855–1861

    Article  Google Scholar 

  • Zhao Q, An QF, Sun ZW, Qian JW, Lee KL, Gao CJ, Lai JY (2010) Studies on structures and ultrahigh permeability of novel polyelectrolyte complex membranes. J Phys Chem B 114:8100–8106

    Article  CAS  Google Scholar 

  • Zhao Q, An QF, Ji YL, Qian JW, Gao CJ (2011) Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel cell applications. J Membr Sci 379:19–45

    Article  CAS  Google Scholar 

  • Zhu Z, Feng X, Penlidis A (2007) Layer-by-layer self-assembled polyelectrolyte membranes for solvent dehydration by pervaporation. Mater Sci Eng C 27:612–619

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the NNSFC (51173160, 21376206), the Fundamental Research Funds for the Central Universities (no. 2013QNA4049) and the National Basic Research Program of China (No. 2009CB623402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-Fu An.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3,247 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XS., An, QF., Zhao, FY. et al. Preparation and separation characteristics of polyelectrolyte complex membranes containing sulfated carboxymethyl cellulose for water–ethanol mixtures at low pH. Cellulose 21, 3597–3611 (2014). https://doi.org/10.1007/s10570-014-0336-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0336-x

Keywords

Navigation