Skip to main content
Log in

Distinct splitting of polymeric cellulosic signals in cashew shell: a TG-diagnosis

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Distinct splitting of the cellulosic polymer signal was seen in thermogravimetric analysis of cashew shell (CS). The splitting was more pronounced in CS as compared to cashew shell cake. The splitting of cellulosic polymer peaks was ascribed to cellulosic depolymerization occurring in two phases during thermal degradation of CS. Three protective tissue configurations of CS was considered responsible for this phenomenon. Kinetics were compared by using two model free isoconversional methods, namely the Friedman and Ozawa-Flynn-Wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antal MJJ, Varhegyi G (1995) Cellulose pyrolysis kinetics: the current state of knowledge. Ind Eng Chem Res 34:703–717

    Article  CAS  Google Scholar 

  • Asogwa EU, Mokwunye IU, Yahaya LE (2007) Evaluation of cashew nut shell liqiud (CNSL) as a potential natural insecticide against termites (soldiers and workers castes). Res J Appl Sci 2:939–942

    Google Scholar 

  • Brems A, Baeyens J, Beerlandt J, Dewil R (2011) Thermogravimetric pyrolysis of waste polyethylene–terephthalate and polystyrene: a critical assessment of kinetics modelling. Resour Conserv Recycl 55:772–781

    Article  Google Scholar 

  • Burhenne L, Messmer J, Aicher T, Laborie M (2013) The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. J Anal Appl Pyrol 101:177–184

    Article  CAS  Google Scholar 

  • Caballero JA, Conesa JA, Front R, Marcilla A (1997) Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. J Anal Appl Pyrol 42:159–175

    Article  CAS  Google Scholar 

  • Chen W, Kuo P (2011) Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy 36:6451–6460

    Article  CAS  Google Scholar 

  • Damartzis T, Vamvuka D, Sfakiotakis S, Zabaniotou A (2011) Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour Technol 102:6230–6238

    Article  CAS  Google Scholar 

  • Gangil S (2014a) Dominant thermogravimetric signatures of lignin in cashew shell as compared to cashew shell cake. Bioresour Technol 155:15–20

    Article  CAS  Google Scholar 

  • Gangil S (2014b) Beneficial transitions in thermogravimetric signals and activation energy levels due to briquetting of raw pigeon pea stalk. Fuel 128:7–13

    Article  CAS  Google Scholar 

  • Gangil S (2014c) Thermogravimetric evidence for better thermal stability in char produced under unconfined conditions. Environ Eng Sci 31(4):183–192

    Article  CAS  Google Scholar 

  • Gangil S (2014d) Polymeric consolidation in briquetted biofuel as compared to raw biomaterial: a TG-Vision for pigeon pea stalks. Energy Fuels 28(5):3248–3254. doi:10.1021/ef5004304

    Article  CAS  Google Scholar 

  • Gedam PH, Sampathkumaran PS (1986) Cashew nut shell liquid: extraction, chemistry and applications. Prog Org Coat 14:115–157

    Article  CAS  Google Scholar 

  • Janković B (2008) Kinetic analysis of the nonisothermal decomposition of potassium metabisulfite using the model-fitting and isoconversional (model-free) methods. Chem Eng J 139:128–135

    Article  Google Scholar 

  • Jordan CA, Akay G (2012) Speciation and distribution of alkali, alkali earth metals and major ash forming elements during gasification of fuel cane bagasse. Fuel 91:253–263

    Article  Google Scholar 

  • Ledakowicz S, Stolarek P (2002) Kinetics of biomass thermal decomposition. Chem Pap 56:378–381

    CAS  Google Scholar 

  • López-González D, Fernandez-Lopez M, Valverde JL, Sanchez-Silva L (2013) Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass. Bioresour Technol 143:562–574

    Article  Google Scholar 

  • Lu C, Song W, Lin W (2009) Kinetics of biomass catalytic process. Biotechnol Adv 27:583–587

    Article  CAS  Google Scholar 

  • Muniz CR, Freire FCO, Soares AA, Cooke PH, Guedes MIF (2013) The ultrastructure of shelled and unshelled cashew nuts. Micron 54–55:52–56

    Article  Google Scholar 

  • Mwangi PM, Aule C, Thiong’o GT (2013) Energy studies of some cashew nut by-products in Kenya. Int J Adv Res 1:880–887

    Google Scholar 

  • Ogunsina BS, Bamgboye AI (2014) Pre-shelling parameters and conditions that influence the whole kernel out-turn of steam-boiled cashew nuts. J Saudi Soc Agric Sci 13:29–34

    Google Scholar 

  • Patel RN, Bandyopadhyay S, Ganesh A (2006) Extraction of cashew (Anacardium occidentale) nut shell liquid using supercritical carbon dioxide. Bioresour Technol 97:847–853

    Article  CAS  Google Scholar 

  • Sanchez-Silva L, López-González D, Villaseñor J, Sánchez P, Valverde JL (2012) Thermogravimetric–mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour Technol 109:163–172

    Article  CAS  Google Scholar 

  • Sbirrazzuoli N, Vincent L, Mija A, Guigo N (2009) Integral, differential and advanced isoconversional methods Complex mechanisms and isothermal predicted conversion–time curves. Chemom Intell Lab Syst 96:219–226

    Article  CAS  Google Scholar 

  • Shen DK, Gu S, Bridgwater AV (2010) The thermal performance of the polysaccharides extracted from hardwood: cellulose and hemicellulose. Carbohydr Polym 82:39–45

    Article  CAS  Google Scholar 

  • Tsamba AJ, Yang W, Blasiak W (2006) Pyrolysis characteristics and global kinetics of coconut and cashew nut shells. Fuel Process Technol 87:523–530

    Article  CAS  Google Scholar 

  • Van de Velden M, Baeyens J, Brems A, Janssens B, Dewil R (2010) Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy 35:232–242

    Article  Google Scholar 

  • Vasile C, Popescu C, Popscu M, Brebu M, Willfor S (2011) Thermal behavior/treatment of some vegetable residues. IV. Thermal decomposition of Eucalyptus wood. Cellul Chem Technol 45:29–42

    CAS  Google Scholar 

  • White JE, Catallo WJ, Legendre BL (2011) Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrol 91:1–33

    Article  CAS  Google Scholar 

  • Yuliana M, Tran-Thi NY, Ju Y-H (2012a) Effect of extraction methods on characteristic and composition of Indonesian cashew nut shell liquid. Ind Crops Prod 35:230–236

    Article  CAS  Google Scholar 

  • Yuliana M, Huynha L-H, Hob Q-P, Truongb C-T, Ju Y-H (2012b) Defatted cashew nut shell starch as renewable polymeric material: isolation and characterization. Carbohydr Polym 87:2576–2581

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was conducted under project 623 of the Central Institute of Agricultural Engineering, Bhopal. The author is thankful to Dr. Pitam Chandra, Director (CIAE), Dr. K.C. Pandey, PC (AICRP on RES), Dr. R.C. Singh, Head (AEP) and Dr. A.K. Dubey, CPI (NAIP-Biomass) for providing the facilities and materials. Mr. P.K. Das is acknowledged for his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Gangil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangil, S. Distinct splitting of polymeric cellulosic signals in cashew shell: a TG-diagnosis. Cellulose 21, 2913–2924 (2014). https://doi.org/10.1007/s10570-014-0309-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0309-0

Keywords

Navigation