Skip to main content
Log in

Polyethylene glycol grafted cotton as phase change polymer

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Thermal storage cotton possessing solid–solid phase change properties was prepared by direct grafting of polyethylene glycol (PEG) on cotton fiber/cloth. Attempt has been made to characterize intermediates so that desired grafting could be obtained. The grafting was done by using urethane linkage and the grafted cotton was found to undergo solid–solid phase transition. The modified cotton was characterized by using Fourier transform infrared spectroscopy (FT-IR), 13C CPMAS, polarizing optical microscopy, differential scanning calorimetry (DSC) and thermogravimetry respectively. The DSC study revealed quite good storage effect of grafted cotton and the enthalpy of melting was found to be 55–59 J/g with a peak appearing at around 60 °C. During cooling scan, the crystallization peak appeared at around 38 °C. Further, thermogravimetric analysis confirmed good thermal stability up to 300 °C. Appreciable improvement of mechanical properties of cotton has been observed after grafting. The polarizing optical micrograph clearly showed change of morphology after grafting, i.e., the grafted PEG adhering to fiber surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  • Alkan C, Sari A (2008) Fatty acid/poly(methyl methacrylate) (PMMA)blends as form-stable phase change materials for latent heat thermal energy storage. Sol Energy 82:118–124

    Article  CAS  Google Scholar 

  • Alper AA, Hasancan O (2011) High-chain fatty acid esters of myristyl alcohol with even carbon number: novel organic phase change materials for thermal energy storage-1. Sol Energy Mater Sol Cells 95:2752–2762

    Article  Google Scholar 

  • Bruno JS, Danna GF, Frost CM, Vigo TL (1989) Temperature adaptable textile fibers and method of preparing same. US 4(851):291

    Google Scholar 

  • Bruno JS, Danna GF, Vigo TL, Zimmerman CM (1990) Temperature adaptable textile fibers and method of preparing same US 4908238A

  • Cao Q, Liu P (2006) Hyperbranched polyurethane as novel solid–solid phase change material for thermal energy storage. Eur Polymer J 42(11):2931–2939

    Article  CAS  Google Scholar 

  • Chen C, Liu W, Yang H, Zhao Y, Liu S (2011) Synthesis of solid–solid phase change material for thermal energy storage by cross linking of polyethylene glycol with poly(glycidyl methacrylate). Sol Energy 85:2679–2685

    Article  CAS  Google Scholar 

  • Clarksean RL (2006) Phase-change material (PCM) system and methods for shifting peak electrical load. US Patent 7096929

  • Collier BJ, Epps HH (1999) Textile testing and analysis. Prentice Hall, New Jersey

    Google Scholar 

  • Dragunski DC, Pawlicka A (2001) Preparation and characterization of starch grafted with toluene poly (propylene oxide) Diisocyanate, Mater Res 4

  • Hale DV, Hoover MJ, O.Neill MJ (1971) Phase change materials handbook. Report No. HREC-5183-LMSCHREC D225138. NASA, Marshal Space Flight Centre. Alabama

  • Harlan SL (1991) ACS Symposium Series 457:248

  • Hasan A, McCormack SJ, Huang MJ, Norton B (2010) Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Sol Energy 84(9):1601–1612

    Article  CAS  Google Scholar 

  • Hawes DW, Banu D, Feldman D (1990) Latent heat storage in concrete II. Sol Energy Mater 21(1):61–80

    Article  CAS  Google Scholar 

  • Hu J (2008) Fabric testing, Woodhead Publishing Series in Textiles: Number 76

  • Jiang Y, Ding EY, Li GK (2002) Study on transition characteristics of PEG/CDA solid–solid phase change materials. Polymer 43:117–122

    Article  CAS  Google Scholar 

  • Kadolph SJ (2007) Quality assurance for textiles and apparel, Fairchild Publication, New York. ISBN: 156367-144-1

  • Kaizawa A, Kamano H, Kawai A, Jozuka T, Senda T, Maruoka N, Okinaka N, Akiyama T (2008) Technical feasibility study of waste heat transportation system using phase change material from industry to city. ISIJ Int 48:540–548

    Article  CAS  Google Scholar 

  • Ke GZ, Xie HF, Ruan RP (2010) Preparation and performance of porous phase change polyethylene glycol/polyurethane membrane. Energy Conserv Manag 51:2294–2298

    Article  CAS  Google Scholar 

  • Kenisarin M, Mahkamov K (2007) Solar energy storage using phase change materials. Renew Sustain Energy Rev 11(9):1913–1965

    Article  CAS  Google Scholar 

  • Li WD, Ding EY (2007) Preparation and characterization of cross-linking PEG/MDI/PE copolymer as solid–solid phase change heat storage material. Solar Energy Mater Solar Cells 91:764–768

    Article  CAS  Google Scholar 

  • Li Y, Liu R, Huang Y (2008) Synthesis and phase transition of cellulose-graft-poly(ethylene glycol) copolymers. J Appl Polym Sci 110:1797–1803

    Article  CAS  Google Scholar 

  • Li Y, Wu M, Liu R, Huang Y (2009) Cellulose-based solid–solid phase change materials synthesized in ionic liquid. Sol Energy Mater Sol Cells 93:1321–1328

    Article  CAS  Google Scholar 

  • Liang XH, Guo YQ (1995) Crystalline–amorphous phase transition of a poly(ethylene glycol)/cellulose blend. Macromolecules 28:6551–6555

    Article  CAS  Google Scholar 

  • Marand A, Dahlin J, Karlsson D, Gunnar S, Marianne D (2004) Determination of technical grade isocyanates used in the production of polyurethane plastics. J Environ Monit 6(7):606–614

    Article  CAS  Google Scholar 

  • Marco B, Wim VH, Andreas H (2009) Materials for compact thermal energy storage: A new IEA joint SHC/ECES task. In 11th international conference on thermal energy storage; Effstock. June 14-17, Stockholm, Sweden

  • Mehling H, Cabeza LF (2008) Heat and cold storage with PCM. Hand book. Springer, Berlin

    Google Scholar 

  • Meng Q, Hu J (2008) A poly (ethylene glycol)-based smart phase change material. Sol Energy Mater Sol Cells 92:1260–1268

    Article  CAS  Google Scholar 

  • Mondal S (2007) Phase change material for smart textiles—an overview. Appl Therm Eng 28(11–12):1536–1550

    Google Scholar 

  • Okano T, Sarko A (1985) Mercerization of cellulose. II. Alkali–cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325–332

    Article  CAS  Google Scholar 

  • Rolle KC (2000) Heat and mass transfer. Prentice-Hall Inc., Upper Saddle River

    Google Scholar 

  • Salaun F, Devaux E, Bourbigot S, Rumeau P (2010) Development of phase change material in clothing Pt I: formulation of microencapsulated phase change. Textile Res J 80:195–205

    Article  CAS  Google Scholar 

  • Sarı A, Cemil A, Alper B, Ali K (2011) Synthesis and thermal energy storage characteristics of polystyrene-graft-palmitic acid copolymers as solid–solid phase change materials. Sol Energy Mater Sol Cells 95(12):3195–3201

    Article  Google Scholar 

  • Shin Y, Yoo D-Il, Son K (2005) Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). II. Preparation and application of PCM microcapsules. J Appl Polym Sci 96:2005–2010

    Article  CAS  Google Scholar 

  • Takahashi Y, Sakamoto R, Kamimoto M, Kanari K, Ozawa T (1981) Investigation of latent heat-thermal energy storage materials. I. Thermoanalytical evaluation of modified polyethylene. Thermochim Acta 50(1–3):31–39

    Article  CAS  Google Scholar 

  • Ullman AZ, Newman CD (2010) Phase-change cooling system. US Patent 0157525

    Google Scholar 

  • Xi P, Duan Y, Fei P, Xia L, Liu R (2012a) Cheng Bowen, Synthesis and thermal energy storage properties of the polyurethane solid–solid phase change materials with a novel tetrahydroxy compound. Eur Polymer J 48:1295–1303

    Article  CAS  Google Scholar 

  • Xi P, Xia L, Fei P, Zhang D, Chenga B (2012b) Preparation and performance of a novel thermoplastics polyurethane solid–solid phase change materials for energy storage. Sol Energy Mater Sol Cells 102:36–43

    Article  CAS  Google Scholar 

  • Zhang M, Na Y, Jiang Z (2005) Preparation and properties of polymeric Solid–solid phase change materials of polyethylene glycol (PEG)/poly(vinyl alcohol) (PVA) copolymers by graft copolymerization. Chem J Chin Univ 26:170–174

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Samui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Kulkarni, P.S. & Samui, A.B. Polyethylene glycol grafted cotton as phase change polymer. Cellulose 21, 685–696 (2014). https://doi.org/10.1007/s10570-013-0120-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0120-3

Keywords

Navigation