Skip to main content
Log in

Evaluation of liquid ammonia treatment on surface characteristics of hemp fiber

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study, we investigated the effects of liquid ammonia treatment on the surface characteristics of hemp fibers. We determined the elemental composition, morphological structure, roughness, and wettability of fiber surface using techniques such as electron spectroscopy for chemical analysis, scanning electron microscopy, atomic force microscopy, and contact angle measurements. The lignin coverage on the hemp surface was calculated from the O/C ratio and the C1 content. The results show that lignin removal from the fiber surface was significantly greater than that from the fiber bulk. After the treatment, the O/C ratio of hemp fibers increased, and cellulose was exposed. The proportion of O2 species that contributed to formation of hydrogen bonds increased; this further increased the number of hydrophilic groups in the hemp fibers, improving the fiber wettability. The liquid ammonia treatment did not change the large dislocation structures in hemp fibers, but the removal of noncellulosic materials from the fiber surface increased the roughness of the fiber surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed A, Adnot A, Kaliaguine S (1987) ESCA study of the solid residues of supercritical extraction of Populus tremuloïdes in methanol. J Appl Polym Sci 34(1):359–375

    Article  CAS  Google Scholar 

  • Ahmed A, Adnot A, Kaliaguine S (1988) ESCA analysis of partially converted lignocellulosic materials. J Appl Polym Sci 35(7):1909–1919

    Article  CAS  Google Scholar 

  • Antoinette CO (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207

    Article  Google Scholar 

  • Ashutosh M, Rui K, Michael EH, David KJ (2011) Effects of alkaline or liquid–ammonia treatment on crystalline cellulose changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4:41

    Article  Google Scholar 

  • Barbara D, Emília C, Csiszár S, István S (2006) Effect of liquid ammonia on the fine structure of linen fabrics. Text Res J 76(8):629–636

    Article  Google Scholar 

  • Buchert J, Pere J, Johansson LS, Campbell JM (2001) Analysis of the surface chemistry of linen and cotton fabrics. Text Res J 71(7):626–629

    Article  CAS  Google Scholar 

  • Carlsson CMG, Ström G (1991) Adhesion between plasma-treated cellulosic materials and polyethylene. Surf Interface Anal 17(7):511–515

    Article  CAS  Google Scholar 

  • Clark GL, Parker EA (1937) An X-ray diffraction study of the action of liquid ammonia on cellulose and its derivatives. J Phys Chem 41(6):777–786

    Article  CAS  Google Scholar 

  • Conrad S (1963) Plasticizing wood with liquid ammonia. Ind Eng Chem 55(10):39

    Article  Google Scholar 

  • David NSH (1984) ESCA study of oxidized wood surfaces. J Appl Polym Sci 29(9):2777–2784

    Article  Google Scholar 

  • David S, Cecile P, Thierry C, Agnes S, Danielle L, Vincent G, Pierre K (2007) Effect of calcium rich and alkaline solutions on the chemical behaviour of hemp fibres. J Mater Sci Lett 42(22):9336–9342

    Google Scholar 

  • Dorris GM, Gray DG (1978a) The surface analysis of paper and wood fibres by ESCA. I. Application to cellulose and lignin. Cellul Chem Technol 12(1):9–23

    CAS  Google Scholar 

  • Dorris GM, Gray DG (1978b) The surface analysis of paper and wood fibres by ESCA. II. Surface composition of mechanical pulps. Cellul Chem Technol 12(6):721–734

    CAS  Google Scholar 

  • Gray DG (1978) The surface analysis of paper and wood fibres by ESCA. III. Interpretation of carbon (1s) peak shape. Cellul Chem Technol 12(6):735–743

    CAS  Google Scholar 

  • Hua X, Kaliaguine S, Kokta BV, Adnot A (1993) Surface analysis of explosion pulps by ESCA part 1. Carbon (1s) spectra and oxygen-to-carbon ratios. Wood Sci Technol 27(6):449–459

    Article  CAS  Google Scholar 

  • Huang WH, Zhao M, Zhu HZ, Zhou X (2005) Structure of ramie treated by liquid ammonia. J DongHua Univ (Eng Ed) 23(1):103–107

    Google Scholar 

  • Hultén AH, Basta J, Larsson P, Ernstsson M (2006) Comparison of different XPS methods for fiber surface analysis. Holzforschung 60(1):14–19

    Article  Google Scholar 

  • Jaymini K, Roy DN, Goel K (2002) Effect of harvesting age on the chemical properties of hemp plants. J Wood Chem Technol 22(4):285–293

    Article  Google Scholar 

  • Johansson LS, Campbell JM, Koljonen K, Stenius P (1999) Evaluation of surface lignin on cellulose fibers with XPS. Appl Surf Sci 144–145:92–95

    Article  Google Scholar 

  • Kangas H, Kleen M (2004) Surface chemical and morphological properties of mechanical pulp fines. Nord Pulp Pap Res J 19(2):191–199

    Article  CAS  Google Scholar 

  • Kim TH, Kim JS, Sunwoo CS, Lee YY (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90(1):39–47

    Article  CAS  Google Scholar 

  • Kolářová K, Vosmanská V, Rimpelová S, Švorčík V (2013) Effect of plasma treatment on cellulose fiber. Cellulose 20(2):953–961

    Article  Google Scholar 

  • Koljonen K, Österberg M, Johansson LS, Stenius P (2003) Surface chemistry and morphology of different mechanical pulps determined by ESCA and AFM. Colloids Surf A 228(1–3):143–158

    Article  CAS  Google Scholar 

  • Kwok RWM (2000) XPS peak fitting program for WIN95/98 XPSPEAK version 4.1. Department of Chemistry, The Chinese University of Hong Kong, Hong Kong

  • Laine J, Stenius P (1994) Surface characterization of unbleached kraft pulps by means of ESCA. Cellulose 1(2):145–160

    Article  CAS  Google Scholar 

  • Leonard YM, Martin PA (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84(12):2222–2234

    Article  Google Scholar 

  • Lewin M, Rau RO, Sello SB (1974) The role of liquid ammonia in functional textile finishes. Text Res J 44(9):680–686

    Article  CAS  Google Scholar 

  • Lisbeth GT, Preben H (2005) Image analysis for the quantification of dislocations in hemp fibres. Ind Crop Prod 21(2):173–184

    Article  Google Scholar 

  • Lisbeth GT, Jorgen BBS, Preben H (2006) Visualisation of dislocations in hemp fibres: a comparison between scanning electron microscopy (SEM) and polarized light microscopy (PLM). Ind Crop Prod 24(2):181–185

    Article  Google Scholar 

  • Liu SH, Wang DH, Pan YH (1988) X-ray photoelectron spectroscopy analysis. Science Press, Beijing

    Google Scholar 

  • Mannan KM (1993) X-ray diffraction study of jute fibres treated with NaOH and liquid anhydrous ammonia. Polymer 34(12):2485–2487

    Article  CAS  Google Scholar 

  • Marianne LT, David S, Claire P, Jean PB, Agnès S, Rene G, Vincent G, Pierre K (2008) Influence of various chemical treatments on the composition and structure of hemp fibres. Compos Part A-Appl S 39(3):514–522

    Google Scholar 

  • Maximova N, Österberg M, Koljonen K, Stenius P (2001) Lignin adsorption on cellulose fibre surfaces: effect on surface chemistry, surface morphology and paper strength. Cellulose 8(2):113–125

    Article  CAS  Google Scholar 

  • Menachem L, Luis GR (1971) The effect of liquid anhydrous ammonia in the structure and morphology of cotton cellulose. J Polym Sci Part C 36(1):213–229

    Google Scholar 

  • Mirjana K, Biljana P, Petar S (2008) Quality of chemically modified hemp fibers. Bioresour Technol 99(1):94–99

    Article  Google Scholar 

  • Moutinho I, Ihalainen P, Figueiredo M, Peltonen J, Ferreira P (2010) Evaluation of the topography of surface sized eucalyptus based papers. Ind Eng Chem Res 49(1):1–5

    Article  CAS  Google Scholar 

  • Moyeenuddin AS, Kim LP, Alan F (2011) Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Compos Part A-Appl S 42(8):888–895

    Google Scholar 

  • Österberg M (2000) On the interactions in cellulose systems: surface forces and adsorption. Dissertation, The Royal Institute of Technology

  • Ouajai S, Shanks RA (2005) Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stab 89(2):327–335

    Article  CAS  Google Scholar 

  • Ouyang S, Ding ZH, Shao K, Li ZE, Xu LP (1992) Quantitative analysis method of the main chemical compositions in ramie. Standard of Chinese textile industry. FZ/T30001-92, pp 93–101

  • Pandey SN, Nair P (1975) A study of the effect of anhydrous liquid ammonia treatment on cotton. Text Res J 45(9):648–653

    Article  CAS  Google Scholar 

  • Paula E, Monika O, Anna-Stiina J (2009) Effect of alkaline treatment on cellulose supramolecular structure studied with combined confocal Raman spectroscopy and atomic force microscopy. Cellulose 16(2):167–178

    Article  Google Scholar 

  • Rowland SP, Wade CP, Bertoniere NR (1984) Pore structure analysis of purified, sodium hydroxide-treated and liquid ammonia-treated cotton celluloses. J Appl Polym Sci 29(11):3349–3357

    Article  CAS  Google Scholar 

  • Roya RL, Yaman B, Mark M (2012) Adhesive surface interactions of cellulose nanocrystals from different sources. J Mater Sci 47(9):3961–3970

    Article  Google Scholar 

  • Saapan AA, Kandil SH, Habib AM (1984) Liquid ammonia and caustic mercerization of cotton fibers using X-ray, infrared, and sorption measurements. Text Res J 54(12):863–867

    Article  Google Scholar 

  • Sgriccia N, Hawley MC, Misra M (2008) Characterization of natural fiber surfaces and natural fiber composites. Compos Part A-Appl S 39(10):1632–1637

    Google Scholar 

  • Shao ZL, Li KC (2006) The effect of fiber surface lignin on interfiber bonding. J Wood Chem Technol 26(3):231–244

    Article  CAS  Google Scholar 

  • Shridhar MB, Mary LR (1970) Electron-microscope study of cotton treated with inter- and intra-crystalline swelling agents. Text Res J 40(10):917–924

    Article  Google Scholar 

  • Ström G, Carlsson G (1992) Wettability of kraft pulps-effect of surface composition and oxygen plasma treatment. J Adhes Sci Technol 6(6):745–761

    Article  Google Scholar 

  • Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1(1):45–70

    Article  CAS  Google Scholar 

  • Tserki V, Matzinos P, Zafeiropoulos NE, Panayiotou C (2006) Development of biodegradable composites with treated and compatibilized lignocellulosic fibers. J Appl Polym Sci 100(6):4703–4710

    Article  CAS  Google Scholar 

  • Yang XK, Du GB, Qian TC, Yang XY, Wang TD (2003) Analysis of the surface modification of wood by X-ray photoelectron spectroscopy. J Instrum Anal 22(4):5–8

    Google Scholar 

  • Zafeiropoulos NE, Vickers PE, Baillie CA, Watts JF (2003) An experimental investigation of modified and unmodified flax fibres with XPS, ToF-SIMS and ATR-FTIR. J Mater Sci 38(19):3903–3914

    Article  CAS  Google Scholar 

  • Zhang JC (2009) Structure and properties of hemp fiber. Chemical Industry Press, Beijing

    Google Scholar 

  • Zhang JQ, Lin L, Hei BH, Liu SJ, Ouyang PK (2009) X-ray photoelectron spectroscopic analysis of celluloses with different crystallization index. Chem Ind For Prod 29(5):30–34

    Google Scholar 

  • Zimmermann MH (1964) The formation of wood in forest trees. Academic Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianchun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Zhang, H. & Zhang, J. Evaluation of liquid ammonia treatment on surface characteristics of hemp fiber. Cellulose 21, 569–579 (2014). https://doi.org/10.1007/s10570-013-0097-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0097-y

Keywords

Navigation