Skip to main content
Log in

Conductive paper through LbL multilayering with conductive polymer: dominant factors to increase electrical conductivity

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A conductive paper was made of cellulose fibers with a multilayer of polyethyleneimine (PEI) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and the factors to increase the conductivity of the paper were investigated. The adsorption amount and the structure of PEI and PEDOT:PSS multilayer was changed by controlling salt concentration and the number of layers, and inter-contact degree of fibers was controlled by calendering. The adsorption behavior of the polyelectrolytes onto cellulose was evaluated using a quartz crystal microbalance with dissipation monitoring, and the adsorption amount was quantitatively analyzed through Kjeldahl nitrogen analysis and an Inductively Coupled Plasma Optical Emission Spectrometer. The conductivity of the resultant paper was in the range of 10−5–10−4 S/cm without loss of paper strength. The conductivity of the paper increased when the multilayer was formed at low salt concentration and the conductive paper was calendered. It appeared that electron transfer by increased contact between PEDOT:PSS improved the conductivity of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agarwal M, Lvov Y, Varahramyan K (2006) Conductive wood microfibres for smart paper through layer-by-layer nanocoating. Nanotechnology 17(21):5319–5325. doi:10.1088/0957-4484/17/21/006

    Article  CAS  Google Scholar 

  • Agarwal M, Xing Q, Shim BS, Kotov N, Varahramyan K, Lvov Y (2009) Conductive paper from lignocellulose wood microfibers coated with a nanocomposite of carbon nanotubes and conductive polymers. Nanotechnology 20(21):215602. doi:10.1088/0957-4484/20/21/215602 (Artn 215602)

    Google Scholar 

  • Decher G, Hong JD (1991) Buildup of ultrathin multilayer films by a self-assembly process.1. Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromol Chem Macromol Symp 46:321–327

    Article  CAS  Google Scholar 

  • Ebrahim SM, Kashyout AB, Soliman MM (2007) Electrical and structural properties of polyaniline/cellulose triacetate blend films. J Polym Res 14(5):423–429. doi:10.1007/s10965-007-9125-7

    Article  CAS  Google Scholar 

  • Enarsson LE, Wågberg L (2008) Adsorption kinetics of cationic polyelectrolytes studied with stagnation point adsorption reflectometry and quartz crystal microgravimetry. Langmuir 24(14):7329–7337. doi:10.1021/La800198e

    Article  CAS  Google Scholar 

  • Fortunato E, Correia N, Barquinha P, Pereira L, Goncalves G, Martins R (2008) High-performance flexible hybrid field-effect transistors based on cellulose fiber paper. IEEE Electron Device Lett 29(9):988–990. doi:10.1109/Led.2008.2001549

    Article  Google Scholar 

  • Höök F, Rodahl M, Brzezinski P, Kasemo B (1998) Energy dissipation kinetics for protein and antibody-antigen adsorption under shear oscillation on a quartz crystal microbalance. Langmuir 14(4):729–734

    Article  Google Scholar 

  • Hu WL, Chen SY, Yang ZH, Liu LT, Wang HP (2011) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115(26):8453–8457. doi:10.1021/Jp204422v

    Article  CAS  Google Scholar 

  • Jung R, Kim HS, Kim Y, Kwon SM, Lee HS, In HJ (2008) Electrically conductive transparent papers using multiwalled carbon nanotubes. J Polym Sci Pol Phys 46(12):1235–1242. doi:10.1002/Polb.21457

    Article  CAS  Google Scholar 

  • Kontturi E, Thune PC, Niemantsverdriet JW (2003) Novel method for preparing cellulose model surfaces by spin coating. Polymer 44(13):3621–3625. doi:10.1016/S0032-3861(03)00283-0

    Article  CAS  Google Scholar 

  • Lang U, Muller E, Naujoks N, Dual J (2009) Microscopical Investigations of PEDOT:PSS thin films. Adv Funct Mater 19(8):1215–1220. doi:10.1002/adfm.200801258

    Article  CAS  Google Scholar 

  • Lingström R, Wågberg L, Larsson PT (2006) Formation of polyelectrolyte multilayers on fibres: influence on wettability and fibre/fibre interaction. J Colloid Interf Sci 296(2):396–408. doi:10.1016/j.jcis.2005.09.017

    Article  Google Scholar 

  • Lingström R, Notley SM, Wågberg L (2007) Wettability changes in the formation of polymeric multilayers on cellulose fibres and their influence on wet adhesion. J Colloid Interf Sci 314(1):1–9. doi:10.1016/j.jcis.2007.04.046

    Article  Google Scholar 

  • Liu XD, Nishi N, Tokura S, Sakairi N (2001) Chitosan coated cotton fiber: preparation and physical properties. Carbohydr Polym 44(3):233–238

    Article  CAS  Google Scholar 

  • Lundin M, Solaqa F, Thormann E, Macakova L, Blomberg E (2011) Layer-by-layer assemblies of chitosan and heparin: effect of solution ionic strength and pH. Langmuir 27(12):7537–7548. doi:10.1021/La200441u

    Article  CAS  Google Scholar 

  • Martins R, Ferreira I, Fortunato E (2011) Electronics with and on paper. Phys Status Solid R 5(9):332–335. doi:10.1002/pssr.201105247

    Article  CAS  Google Scholar 

  • Mičušík M, Omastová M, Prokeš J, Krupa I (2006) Mechanical and electrical properties of composites based on thermoplastic matrices and conductive cellulose fibers. J Appl Polym Sci 101(1):133–142. doi:10.1002/App.23041

    Article  Google Scholar 

  • Murphy EJ (1960a) The dependence of the conductivity of cellulose, silk and wool on their water content. J Phys Chem Solids 16(1–2):115–122

    Article  CAS  Google Scholar 

  • Murphy EJ (1960b) The temperature dependence of the conductivity of dry cellulose. J Phys Chem Solids 15(1–2):66–71

    Article  CAS  Google Scholar 

  • Notley SM, Eriksson M, Wågberg L (2005) Visco-elastic and adhesive properties of adsorbed polyelectrolyte multilayers determined in situ with QCM-D and AFM measurements. J Colloid Interf Sci 292(1):29–37. doi:10.1016/j.jcis.2005.05.057

    Article  CAS  Google Scholar 

  • Nyström G, Mihranyan A, Razaq A, Lindström T, Nyholm L, Stromme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114(12):4178–4182. doi:10.1021/Jp911272m

    Article  Google Scholar 

  • Okamoto Y, Kanda K, Kishiwada S, Fujiwara T (2004) Determination of phosphorous and sulfur in environmental samples by electrothermal vaporization inductively coupled plasma atomic emission spectrometry. Appl Spectrosc 58(1):105–110

    Article  CAS  Google Scholar 

  • Peng CQ, Thio YS, Gerhardt RA (2008) Conductive paper fabricated by layer-by-layer assembly of polyelectrolytes and ITO nanoparticles. Nanotechnology 19(50):505603. doi:10.1088/0957-4484/19/50/505603 (Artn 505603)

    Google Scholar 

  • Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci USA 104(34):13574–13577

    Article  CAS  Google Scholar 

  • Ramos JJI, Llarena I, Moya SE (2011) Unusual collapse of highly hydrated polyelectrolyte multilayers with the ionic strength. J Polym Sci Pol Chem 49(11):2346–2352. doi:10.1002/Pola.24662

    Article  CAS  Google Scholar 

  • Russler A, Sakakibara K, Rosenau T (2011) Cellulose as matrix component of conducting films. Cellulose 18(4):937–944. doi:10.1007/s10570-011-9555-6

    Article  CAS  Google Scholar 

  • Ryu J, Youn HJ, Chin SM, Lee S (2011) Effect of pH and conductivity in weak polyelectrolytes multilayering on paper properties. Nord Pulp Pap Res J 26(4):410–414

    Article  CAS  Google Scholar 

  • Unander T, Nilsson HE (2009) Characterization of printed moisture sensors in packaging surveillance applications. IEEE Sens J 9(8):922–928. doi:10.1109/Jsen.2009.2024866

    Article  Google Scholar 

  • Wågberg L, Forsberg S, Johansson A, Juntti P (2002) Engineering of fibre surface properties by application of the polyelectrolyte multilayer concept. Part I: modification of paper strength. J Pulp Pap Sci 28(7):222–228

    Google Scholar 

  • Wennrich R, Mroczek A, Dittrich K, Werner G (1995) Determination of nonmetals using ICP-AES-techniques. Fresenius J Anal Chem 352(5):461–469

    Article  CAS  Google Scholar 

  • Wistrand I, Lingström R, Wågberg L (2007) Preparation of electrically conducting cellulose fibres utilizing polyelectrolyte multilayers of poly(3,4-ethylenedioxythiophene): poly(styrene sulphonate) and poly(allyl amine). Eur Polym J 43(10):4075–4091. doi:10.1016/j.eurpolymj.2007.03.053

    Article  CAS  Google Scholar 

  • Zheng ZG, McDonald J, Khillan R, Su Y, Shutava T, Grozdits G, Lvov YM (2006) Layer-by-layer nanocoating of lignocellulose fibers for enhanced paper properties. J Nanosci Nanotechnol 6(3):624–632. doi:10.1166/Jnn.2006.081

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (R01-2007-000-10791-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hye Jung Youn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Ryu, J. & Youn, H.J. Conductive paper through LbL multilayering with conductive polymer: dominant factors to increase electrical conductivity. Cellulose 19, 2153–2164 (2012). https://doi.org/10.1007/s10570-012-9781-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9781-6

Keywords

Navigation