Skip to main content
Log in

Direct synthesis of cellulose adipate derivatives using adipic anhydride

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The poor aqueous solubility of many drugs can be overcome by formulation as amorphous solid dispersions (ASD) in cellulosic-based polymer matrices. Cellulose esters containing adipates and other ester groups have shown great promise as new ASD polymers. Previous attempts to synthesize these cellulose adipate esters by direct reaction of cellulose derivatives with adipic anhydride failed due to crosslinking and gelation, caused by formation of poly(adipic anhydride) and subsequent reaction of the poly(anhydride) with cellulosic hydroxyls. In order to develop direct, efficient syntheses of these pH-sensitive cellulose adipate derivatives, we have developed new synthetic procedures that cleanly afford soluble ester products by direct condensation with adipic anhydride, that show no evidence of crosslinking. A series of cellulose ester adipates has been synthesized by this direct route, containing substantial adipate DS (up to 0.53). This new method requires no complex solvents or protective groups, and is an effective and versatile route to these useful materials.

Graphical Abstract

Reaction of cellulose acetate propionate (CAP-504-0.2) with adipic anhydride

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abell AD, Morris KB, Litten JC (1990) Synthesis and deprotection of [1-(Ethoxycarbonyl)-4-[(diphenylmethoxy)carbonyl]-1-methyl-2-oxobutyl]triphenylphosphonium chloride: a key intermediate in the Wittig reaction between a cyclic anhydride and a stabilized ylide. J Org Chem 55:5217–5221

    Article  CAS  Google Scholar 

  • Albertsson AC, Eklund M (1996) Short methylene segment crosslinks in degradable aliphatic polyanhydride: network formation, characterization, and degradation. J Polym Sci Pol Chem 34:1395–1405

    Article  CAS  Google Scholar 

  • Albertsson AC, Lundmark S (1988) Synthesis of poly(Adipic Anhydride) by use of ketene. J Macromol Sci Chem 25:247–258

    Article  Google Scholar 

  • Albertsson AC, Lundmark S (1990) Melt polymerization of adipic anhydride (Oxepane-2,7-Dione). J Macromol Sci Chem 27:397–412

    Article  Google Scholar 

  • Albertsson AC, Carlfors J, Sturesson C (1996) Preparation and characterisation of poly(adipic anhydride) microspheres for ocular drug delivery. J Appl Polym Sci 62:695–705

    Article  CAS  Google Scholar 

  • Allen JM, Wilson AK, Lucas PL, Curtis LG (1997) Carboxyalkyl cellulose esters. US Patent 5,668,273

  • Allen JM, Wilson AK, Lucas PL, Curtis LG (1998) Process for preparing carboxyalkyl cellulose esters. US Patent 5,792,856

  • Buchanan CM, Buchanan NL, Carty SN, Kuo CM, Lambert JL, Posey-Dowty JD, Watterson MD, Malcolm MO, Lindblad MS (2011) Cellulose interpolymers and method of oxidation. US Patent 7,879,994

  • Campbell HJ, Francis T (1965) The cross-linking of cotton cellulose by aliphatic dicarboxylic acids. Text Res J 35:260–270

    Article  CAS  Google Scholar 

  • DiNunzio JC, Miller DA, Yang W, McGinity JW, Williams RO III (2008) Amorphous compositions using concentration enhancing polymers for improved bioavailability of itraconazole. Mol Pharm 5:968–980

    Article  CAS  Google Scholar 

  • Edgar KJ (1993) Cellulose esters in waterborne coatings. Polym Paint Colour J 183:564–571

    CAS  Google Scholar 

  • Edgar KJ (2007) Cellulose esters in drug delivery. Cellulose 14:49–64

    Article  CAS  Google Scholar 

  • Edgar KJ (2009) Direct synthesis of partially substituted cellulose esters. In: Edgar KJ, Buchanan CM, Heinze T (eds) Polysaccharide materials: performance by design, vol 1017. American Chemical Society, Washington, DC, pp 213–229

    Chapter  Google Scholar 

  • Edgar KJ, Arnold KM, Blount WW, Lawniczak JE, Lowman DW (1995) Synthesis and properties of cellulose acetoacetates. Macromolecules 28:4122–4128

    Article  CAS  Google Scholar 

  • Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688

    Article  CAS  Google Scholar 

  • English AR, Girard D, Jasys VJ, Martingano RJ, Kellogg MS (1990) Orally effective prodrugs of the beta-lactamase inhibitor sulbactam. J Med Chem 33:344–347

    Article  CAS  Google Scholar 

  • Fox SC, Edgar KJ (2011) Synthesis of regioselectively brominated cellulose esters and 6-cyano-6-deoxycellulose esters. Cellulose 18:1305–1314

    Article  CAS  Google Scholar 

  • Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JA (2008) Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm 5:1003–1019

    Article  CAS  Google Scholar 

  • Furuhata K, Koganei K, Chang H-S, Aoki N, Sakamoto M (1992) Dissolution of cellulose in lithium bromide-organic solvent systems and homogeneous bromination of cellulose with N-bromosuccinimide triphenylphosphine in lithium bromide—N,N-dimethylacetamide. Carbohydr Res 230:165–177

    Article  CAS  Google Scholar 

  • Gomez-Bujedo S, Fleury E, Vignon MR (2003) Preparation of cellouronic acids and partially acetylated cellouronic acids by TEMPO/NaClO oxidation of water-soluble cellulose acetate. Biomacromolecules 5:565–571

    Article  Google Scholar 

  • Hauss DJ (2007) Oral lipid-based formulations. Adv Drug Del Rev 59:667–676

    Article  CAS  Google Scholar 

  • Ilevbare G, Liu H, Edgar KJ, Taylor LS Understanding polymer properties important for crystal growth inhibition—impact of chemically diverse polymers on solution crystal growth of ritonavir. Cryst Growth Des. doi:10.1021/cg300325p

  • Kar N, Liu H, Edgar KJ (2011) Synthesis of cellulose adipate derivatives. Biomacromolecules 12:1106–1115

    CAS  Google Scholar 

  • Kennedy M, Hu J, Gao P, Li L, Ali-Reynolds A, Chal B, Gupta V, Ma C, Mahajan N, Akrami A, Surapaneni S (2008) Enhanced bioavailability of a poorly soluble VR1 antagonist using an amorphous solid dispersion approach: a case study. Mol Pharm 5:981–993

    Article  CAS  Google Scholar 

  • Konno H, Taylor LS (2008) Ability of different polymers to inhibit the crystallization of amorphous felodipine in the presence of moisture. Pharm Res 25:969–978

    Article  CAS  Google Scholar 

  • Liebert T, Hussain MA, Heinze T (2005a) Structure determination of cellulose esters via subsequent functionalization and NMR spectroscopy. Macromol Symp 223:79–91

    Article  CAS  Google Scholar 

  • Liebert T, Pfeiffer K, Heinze T (2005b) Carbamoylation applied for structure determination of cellulose derivatives. Macromol Symp 223:93–108

    Article  CAS  Google Scholar 

  • Liu CF, Sun RC, Zhang AP, Ren JL, Wang XA, Qin MH, Chao ZN, Luo W (2007) Homogeneous modification of sugarcane bagasse cellulose with succinic anhydride using a ionic liquid as reaction medium. Carbohyd Res 342:919–926

    Article  CAS  Google Scholar 

  • Liu CF, Zhang AP, Li WY, Yue FX, Sun RC (2009) Homogeneous modification of cellulose in ionic liquid with succinic anhydride using N-bromosuccinimide as a catalyst. J Agric Food Chem 57:1814–1820

    Article  CAS  Google Scholar 

  • Malm CJ, Fordyce CR (1940) Cellulose esters of dibasic organic acids. Ind Eng Chem 32:405–408

    Article  CAS  Google Scholar 

  • Marsac PJ, Konno H, Taylor LS (2006) A comparison of the physical stability of amorphous felodipine and nifedipine systems. Pharm Res 23:2306–2316

    Article  CAS  Google Scholar 

  • McCormick CL, Dawsey TR (1990) Preparation of cellulose derivatives via ring-opening reactions with cyclic reagents in lithium chloride/N,N-dimethylacetamide. Macromolecules 23:3606–3610

    Article  CAS  Google Scholar 

  • Posey-Dowty JD, Watterson TL, Wilson AK, Edgar KJ, Shelton MC, Lingerfelt LR (2007) Zero-order release formulations using a novel cellulose ester. Cellulose 14:73–83

    Article  CAS  Google Scholar 

  • Rowland SP, Brannan MF (1968) Mobile ester cross links for thermal creasing of wrinkle-resistant cotton fabrics. Text Res J 38:634–643

    Article  CAS  Google Scholar 

  • Rumondor AC, Ivanisevic I, Bates S, Alonzo DE, Taylor LS (2009) Evaluation of drug-polymer miscibility in amorphous solid dispersion systems. Pharm Res 26:2523–2534

    Article  CAS  Google Scholar 

  • Sealey JE, Samaranayake G, Todd JG, Glasser WG (1996) Novel cellulose derivatives.4. Preparation and thermal analysis of waxy esters of cellulose. J Polym Sci Pol Phys 34:1613–1620

    Article  CAS  Google Scholar 

  • Shelton MC, Posey-Dowty JD, Lingerfelt LR, Kirk SK, Klein S, Edgar KJ (2009) Enhanced dissolution of poorly soluble drugs from solid dispersions in carboxymethylcellulose acetate butyrate matrices. In: Edgar KJ, Heinze T, Liebert T (eds) Polysaccharide materials: performance by design, vol 1017. American Chemical Society, Washington, DC

    Google Scholar 

  • Shibata I, Isogai A (2003) Depolymerization of celluronic acid during TEMPO-mediated oxidation. Cellulose 10:151–158

    Article  CAS  Google Scholar 

  • Takaragi A, Minoda M, Miyamoto T, Liu HQ, Zhang LN (1999) Reaction characteristics of cellulose in the lithium chloride/1,3-dimethyl-2-imidazolidinone solvent system. Cellulose 6:93–102

    Article  CAS  Google Scholar 

  • Taylor LS, Zografi G (1997) Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res 14:1691–1698

    Article  CAS  Google Scholar 

  • Yoshimura T, Matsuo K, Fujioka R (2006) Novel biodegradable superabsorbent hydrogels derived from cotton cellulose and succinic anhydride: Synthesis and characterization. J Appl Poly Sci 99:3251–3256

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported primarily by a grant from the National Science Foundation (NSF, grant number DMR-0804501). The authors would like to thank the Eastman Chemical Company for their kind donation of the cellulose esters used in this work. We would also like to thank the Macromolecules and Interfaces Institute and the Institute for Critical Technologies and Applied Science at Virginia Tech for their support, and Tianyu Wu for running the SEC analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Edgar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10570_2012_9724_MOESM1_ESM.doc

Supplementary information available for this paper includes 1H NMR spectra of pure adipic anhydride, CAAdP samples 1 and 3 prior to hot water washing, CAAdP samples 2, 3, and 10, CAAdB samples 13 and 16, and CAAd sample 19. FTIR spectra of CAAdB sample 13 and CAAd sample 17. 13C NMR spectra of CAAdB sample 16 and CAAd sample 17. (DOC 1001 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Kar, N. & Edgar, K.J. Direct synthesis of cellulose adipate derivatives using adipic anhydride. Cellulose 19, 1279–1293 (2012). https://doi.org/10.1007/s10570-012-9724-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9724-2

Keywords

Navigation