Skip to main content
Log in

Valence band structure of cellulose and lignin studied by XPS and DFT

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this report, X-ray induced photoelectron spectroscopy (XPS) measurements of the valence band structure of cellulose and lignin are combined with a theoretical reconstruction of the spectra based on density functional theory (DFT) calculations. These calculations involve an analysis of the valence band structures and their respective orbitals in which basic units of cellulose and lignin are considered. In addition, photoionization cross sections are incorporated for reconstruction of the XPS spectra. This combination of theoretical calculations and experimental measurements revealed that an emission present up to 10 eV in the valence band structure is dominated by oxygen rather than by carbon, as reported in literature. Furthermore, a quantitative elemental analysis shows significant carbon contributions at binding energies above 13 eV. The valence band analysis supported by DFT provides a powerful basis for a detailed interpretation of spectroscopic data and enables a profound insight into application relevant processes in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andresen M, Johansson LS, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677

    Article  CAS  Google Scholar 

  • Beamson G, Briggs D (1998) The XPS of polymers database. Surface Spectra, Manchester

    Google Scholar 

  • Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  • Belgacem MN, Czeremuszkin G, Sapieha S, Gandini A (1995) Surface by XPS characterization and inverse gas of cellulose fibres chromatography. Cellulose 2:145–157

    Article  CAS  Google Scholar 

  • Briggs D, Seah MP (1990) Practical surface analysis, vol 1: auger and X-ray photoelectron spectroscopy, 2nd edn. Wiley, New York, p 227

  • Danielache S, Mizuno M, Shimada S, Endo K, Ida T, Takaoka K, Kurmaev EZ (2005) Analysis of 13C NMR chemical shielding and XPS for cellulose and chitosan by DFT calculations using the model molecules. Polym J 37:21–29

    Article  CAS  Google Scholar 

  • Davin LB, Wang HB, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275(5298):362–367

    Article  CAS  Google Scholar 

  • Ding C, Qian X, Yu G, An X (2010) Dopant effect and characterization of polypyrrole-cellulose composites prepared by in situ polymerization process. Cellulose 17:1067–1077

    Article  CAS  Google Scholar 

  • Dorrestijn E, Laarhoven LJJ, Arends IWCE, Mulder P (2000) The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. J Anal Appl Pyrolysis 54:153–192

    Article  CAS  Google Scholar 

  • Dorris GM, Gray DG (1981) Adsorption of hydrocarbons on water-swollen cellulose. J Chem Soc Faraday Trans 1 F 77:725–740

    Article  CAS  Google Scholar 

  • Drofenik J, Gaberscek M, Dominko R, Poulsen FW, Mogensen M, Pejovnik S, Jamnik J (2003) Cellulose as a binding material in graphitic anodes for Li ion batteries: a performance and degradation study. Electrochim Acta 48:883–889

    Article  CAS  Google Scholar 

  • Durbeej B, Wang YN, Eriksson L (2003) Lignin biosynthesis and degradation a major challenge for computational chemistry. High Perform Comput Comput Sci VECPAR 2002 2565:267–278

    Google Scholar 

  • French AD, Dowd MK, Reilly PJ (1997) MM3 modeling of fructose ring shapes and hydrogen bonding. J Mol Struct THEOCHEM 395–396:271–287

    Article  Google Scholar 

  • French AD, Kelterer AM, Johnson GP, Dowd MK (2000) B3LYP/6-31G*, RHF/6-31G* and MM3 heats of formation of disaccharide analogs. J Mol Struct THEOCHEM 556:303–313

    CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Inc., Wallingford

  • Haensel T, Comouth A, Lorenz P, Ahmed SIU, Krischok S, Zydziak N, Kauffmann A, Schaefer JA (2009) Pyrolysis of cellulose and lignin. Appl Surf Sci 255:8183–8189

    Article  CAS  Google Scholar 

  • Haensel T, Comouth A, Zydziak N, Bosch E, Kauffmann A, Pfitzer J, Krischok S, Schaefer JA, Ahmed SIU (2010) Pyrolysis of wood-based polymer compounds. J Anal Appl Pyrolysis 87:124–128

    Article  CAS  Google Scholar 

  • Himmerlich M (2008) Surface characterization of indium compounds as functional layers for (opto)electronic and sensoric applications. Dissertation, Ilmenau University of Technology

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  • Johansson LS (2002) Monitoring fibre surfaces with XPS in papermaking processes. Mikrochim Acta 138:217–223

    Article  CAS  Google Scholar 

  • Johansson LS, Campbell JM (2004) Reproducible XPS on biopolymers: cellulose studies. Surf Interface Anal 36:1018–1022

    Article  CAS  Google Scholar 

  • Johansson LS, Campbell JM, Koljonen K, Stenius P (1999) Evaluation of surface lignin on cellulose fibers with XPS. Appl Surf Sci 144–145:92–95

    Article  Google Scholar 

  • Kalaskar DM, Ulijn RV, Gough JE, Alexander MR, Scurr DJ, Sampson WW, Eichhorn SJ (2010) Characterisation of amino acid modified cellulose surfaces using ToF-SIMS and XPS. Cellulose 17:747–756

    Article  CAS  Google Scholar 

  • Klarhöfer L, Burkhard R, Viöl W, Höfft O, Dieckhoff S, Kempter V, Maus-Friedrichs W (2008) Valence band spectroscopy on lignin. Holzforschung 62:688–693

    Article  Google Scholar 

  • Laine J, Stenius P, Carlsson G, Ström G (1994) Surface characterization of unbleached kraft pulps by means of ESCA. Cellulose 1:145–160

    Article  CAS  Google Scholar 

  • Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  • Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  • Nägele H, Pfitzer J, Lehnberger C, Landeck H, Birkner K, Viebahn U, Scheel W, Schmidt R, Hagelüken M, Müller J (2005) Renewable resources for use in printed circuit boards. Circuit World 31:26–29

    Article  Google Scholar 

  • Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598

    Article  CAS  Google Scholar 

  • Östenson M, Järun H, Toriz G, Gatenholm P (2006) Determination of surface functional groups in lignocellulosic materials by chemical derivatization and ESCA analysis. Cellulose 13:157–170

    Article  Google Scholar 

  • Perdew JP, Ruzsinszky A, Constantin LA, Sun J, Csonka GI (2009) Some Fundamental Issues in Ground-State Density Functional Theory: A Guide for the Perplexed. J Chem Theory Comput 5:902–908

    Article  CAS  Google Scholar 

  • Reinmöller M, Ulbrich A, Ikari T, Preiß J, Höfft O, Endres F, Krischok S, Beenken WJD (2011) Theoretical reconstruction and elementwise analysis of photoelectron-spectra for imidazolium-based ionic liquids. Phys Chem Chem Phys 13:19526–19533

    Article  Google Scholar 

  • Remko M, Polčin J (1977) LCAO MO investigations on lignin model compounds. Z Phys Chem Neue Fol 106:249–257

    Article  CAS  Google Scholar 

  • Shah J, Brown RM Jr (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66:352–355

    Article  CAS  Google Scholar 

  • Stenius P, Laine J (1994) Studies of cellulose surfaces by titration and ESCA. Appl Surf Sci 75:213–219

    Article  CAS  Google Scholar 

  • Villar Garcia IJ, Smith EF, Taylor AW, Qiu F, Lovelock KRJ, Jones RG, Licence P (2011) Charging of ionic liquid surfaces under X-ray irradiation: the measurement of absolute binding energies by XPS. Phys Chem Chem Phys 13:2797–2808

    Article  CAS  Google Scholar 

  • Yeh JJ, Lindau I (1985) Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. At Data Nucl Data Tables 32:1–155

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Haensel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haensel, T., Reinmöller, M., Lorenz, P. et al. Valence band structure of cellulose and lignin studied by XPS and DFT. Cellulose 19, 1005–1011 (2012). https://doi.org/10.1007/s10570-012-9681-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9681-9

Keywords

Navigation