Skip to main content

Advertisement

Log in

Covalent attachment of lysozyme to cotton/cellulose materials: protein verses solid support activation

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Covalent attachment of enzymes to cellulosic materials like cotton is of interest where either release or loss of enzyme activity over time needs to be avoided. The covalent attachment of an enzyme to a cellulosic substrate requires either activation of a protein side chain or an organic functional group on the cellulosic substrate. Use of a water soluble carbodiimide to create an amide linkage as the covalent attachment between the enzyme and substrate represents an aqueous-based alternative which may be preferred for textile processes. Here we describe an amide bond-mediated lysozyme immobilization applied to cotton where either the carboxylate side chains of the protein or pendant carboxylates in a citrate, cross-linked cotton support are activated as the O-acyl-isourea intermediate, and the reactive amino nucleophiles are derived from amino-silanized cotton and the protein’s amino side chains, respectively. A comparison is made of the two activation approaches to covalently link lysozyme to two different cotton fabrics using the water soluble carbodiimide 1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide-metho-p-toluene sulfonate. A comparison of the resulting enzyme activities of lysozyme on two different cotton supports showed that linking lysozyme to citrate crosslinked cotton gave higher activity than on aminosilanized cotton. The lysozyme-cellulose conjugate formed on the citrate crosslinked nonwoven cotton fabric gave the highest yield and antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alonso D, Gimeno M, Olayo R, Vazquez-Torres H, Sepulveda-Sanchez J, Shirai K (2009) Cross-linking chitosan into UT-irradiated cellulose fibers for the preparation of antimicrobial-finished textiles. Carbohydr Polym 77:536–543

    Article  CAS  Google Scholar 

  • Antonio BF, Valle-Vigon P, Sevilla M (2010) Synthesis of colloidal nanoparticles of a tunable mesopore size and their application to the adsorption of biomolecules. J Colloid Interface Sci 349:173–180

    Article  Google Scholar 

  • Baltazar-y-Jimenez A, Bismarck A (2007) Wetting behavior, moisture up-take and electrokinetic properties of lignocellulosic fibres. Cellulose 14:115–127

    Article  CAS  Google Scholar 

  • Beddows CG (1988) The immobilization of enzymes onto hydrolyzed polyethylene-g-co-2-HEMA. J Appl Polym Sci 35:135–144

    Article  CAS  Google Scholar 

  • Bismarck A, Springer J, Mohanty AK, Hinrichsen G, Khan MA (2000) Characterization of several modified jute fibers using zeta-potential measurements. Colloid Polym Sci 278:229–235

    Article  CAS  Google Scholar 

  • Blake CCF, Mair GA, North ACT, Phillips DC, Sarma VR (1967a) On the conformation of hen egg-white lysozyme molecule. Proc Roy Soc Ser B 167:365–377

    Article  CAS  Google Scholar 

  • Blake CCF, Johnson LN, Mair GA, North ACT, Phillips DC, Sarma VR (1967b) Crystallographic studies of the activity of hen egg-white lysozyme. Proc Roy Soc Lond B 167:378–388

    Article  CAS  Google Scholar 

  • Branen JK, Davidson MP (2004) Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and latoferrin. Int J of Food Microbiol 90:63–74

    Article  CAS  Google Scholar 

  • Cisani G, Varaldo PE, Pompei R, Valiesena S, Satra G (1989) Cell fusion induced by herpes simplex is inhibited by hen egg-white lysozyme. Microbios 59:73–83

    CAS  Google Scholar 

  • Ding H-M, Shao L, Liu R-J, Xiao Q-G, Chen J-F (2005) Silica nanotubes for lysozyme immobilization. J Colloid Interface Sci 290:102–106

    Article  CAS  Google Scholar 

  • Dragoni I, Balzaretti C, Rossini S, Rossi L, Dell’Orto V, Baldi A (2011) Detection of hen lysozyme on proteic profiles of Grana Padano cheese through SELDI-TOFI MS high-throughput technology during the ripening process. Food Anal Methods 4:233–339

    Article  Google Scholar 

  • Edwards JV, Sethumadhavan K, Ullah AHJ (2000) Conjugation and modeled structure/function analysis of lysozyme on glycine esterified cotton cellulose fibers. Bioconjugate Chem 11:469–473

    Article  CAS  Google Scholar 

  • Edwards JV, Eggleston G, Yager DR, Cohen IK, Diegelmann RF, Bopp AF (2002) Design preparation and assessment of citrate-linked monosaccharide cellulose conjugates with elastase-lowering activity. Carbohydr Polym 50:305–314

    Article  CAS  Google Scholar 

  • Edwards JV, Prevost N, Condon B, Sethumadhavan K, Ullah J (2011) Immobilization of lysozyme on cotton fabrics: synthesis, characterization and activity. AATCC 11:73–79

    CAS  Google Scholar 

  • Gao P, Cai P (2008) The boundary molecules in a lysozyme pattern exhibit preferential antibody binding. Langmuir 24:10334–10339

    Article  CAS  Google Scholar 

  • Grimsley JK, Singh WP, Wild JR, Giletto A (2001) A novel, enzyme-based method for the wound—surface removal and decontamination of organophosphorus nerve agents. In: Edwards JV, Vigo TL (eds) Bioactive fibers and polymer, ACS symposium series 792. American Chemical Society, Washington

    Google Scholar 

  • Gupta P, Bajpai M, Bajpai SK (2008) Textile technology: investigations of antibacterial properties of silver nanoparticle-loaded poly (acrylamide-co-itaconic acid)-grafted cotton fabric. J Cotton Sci 12:280–286

    CAS  Google Scholar 

  • Haynes DH, Kowalsky A, Pressman BC (1969) Carboxyl group modification and the activity of lysozyme. J Biol Chem 244:505–508

    Google Scholar 

  • Hirano S (1999) Chitin and chitosan as novel biotechnological materials. Polym Int 48:732–734

    Article  CAS  Google Scholar 

  • Ibrahim NA, Gouda M, El-Shafei AM, Abdel-Fatah OM (2007) Antimicrobial activity of cotton fabrics containing immobilized enzymes. J Appl Polym Sci 104:1754–1761

    Article  CAS  Google Scholar 

  • Janolino VG, Swaisgood HE (1982) Analysis and optimization of methods using water-soluble carbodiimide for immobilization of biochemicals to porous glass. Biotechnol Bioeng 24:1069–1080

    Article  CAS  Google Scholar 

  • Jeanloz RW, Sharon N, Flowers HM (1963) The chemical structure of a disaccharide isolated from Micrococcus lysodeikticus cell wall. Biochem Biophys Res Commun 13:20–25

    Article  CAS  Google Scholar 

  • Klibanov AM (1983) Immobilized enzymes and cells as practical catalysts. Science 219:722–727

    Article  CAS  Google Scholar 

  • Kotwal S, Shankar V (2009) Immobilized invertase. Biotechnol Adv 22:311–322

    Article  Google Scholar 

  • Kubiak-Ossowska K, Mulheran PA (2010) What governs protein adsorption and immobilization at a charged solid surface? Langmuir 26:7690–7694

    Article  CAS  Google Scholar 

  • Lampis G, Deidda D, Pinza M, Pompei R (2001) Enhancement of anti-herpetic activity of glycyrrhizic acid by physiological proteins. Antivir Chem Chemother 12:125–131

    CAS  Google Scholar 

  • Lee-Huang S, Maiorov V, Huang PL, Ng A, Hee CL, Chang Y-T, Kallenbach N, Huang PL, Chen H-C (2005) Structural and functional modeling of human lysozyme reveals a unique nonapeptide, HL9, with anti-HIV activity. Biochemistry 44:4648–4655

    Article  CAS  Google Scholar 

  • Lou C-W (2008) Process technology and properties evaluation of a chitosan-coated tencel/cotton nonwoven fabric as a wound dressing. Fibers Polym 9:286–292

    Article  CAS  Google Scholar 

  • Madhumati R, Luckarift HR, Sarsenova A, Wild FR, Ramanculov EK, Olsen EV, Simonian A (2009) Lysozyme-mediated formation of protein-silica nano-composites for biosensing applications. Colloids Surf B Biointerfaces 73:58–64

    Article  Google Scholar 

  • Minier M, Salmain M, Yacoubi N, Barbes L, Methivier C, Zanna S, Pradier C-M (2005) Covalent immobilization of lysozyme on stainless steel interface spectroscopic characterization and measurement of enzymatic activity. Langmuir 21:5957–5965

    Article  CAS  Google Scholar 

  • Ouahidi I, Hamsas AY, Aarab L (2011) Modulation of egg white protein allerginicity under physical and chemical treatment. Food Agric Immunol 22:57–68

    Article  CAS  Google Scholar 

  • Parikh DV, Edwards JV, Condon BD, Parikh AD (2008) Silver-carboxylate ion-paired alginate and carboxymethylated cotton with antimicrobial activity. AATCC Review 8:38–43

    CAS  Google Scholar 

  • Pechkova E, Tripathi SK, Nicolini C (2010) Comparison of lysozyme crystals grown by apa and classical hanging drop method. Image from the RCSB PDB (http://www.pdb.org) of PDB ID: 3IJU. doi:10.2210/pdb3iju/pdb

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  • Philips DC (1966) The three-dimensional structure of an enzyme molecule. Sci Amer 215:78–90

    Article  Google Scholar 

  • Purwar R, Mishra P, Joshi M (2008) Antibacterial finishing of cotton textiles using neem extract. AATCC Review 8:36–43

    CAS  Google Scholar 

  • Salton MRJ, Ghuysen JM (1959) The structure of di- and tetra-saccharides released from cell walls by lysozyme and Streptomyces F1 enzyme and the β (1-4)Ν-acetylhexosaminidase activity of these enzymes. Biochim Biophys Acta 36:552–554

    Article  CAS  Google Scholar 

  • Salton MRJ, Ghuysen JM (1960) Acetylhexosamine compounds enzymatically released from micrococcus lysodeikticus cell walls. Biochim Biophys Acta 45:355–363

    Article  CAS  Google Scholar 

  • Samaranayake YH, Smaranayake LP, Pow EHN, Beena VT, Yeung KWS (2001) Antifungal effects of lysozyme and lactoferrin against genetically similar, sequential candida albicans isolates from a human immunodeficiency virus-infected southern Chinese cochort. J Clin Microbiol 39:3296–3302

    Article  CAS  Google Scholar 

  • Thilagavathi G, Kannaian T (2008) Application of prickly chaff (Achyranthes aspera Linn.) leaves as herbal antimicrobial finish for cotton fabric used in healthcare textiles. Natural Product Radiance 7:330–334

    Google Scholar 

  • Tomsic B, Simoncic B, Orle B, Zerjav M, Schroers H, Simoncic A, Samardziaz Z (2009) Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric. Carbohydr Polym 75:618–626

    Article  CAS  Google Scholar 

  • Wang Q, Fann X, Hu Y, Yuan J, Cui L, Wang P (2009) Antibacterial functionalization of wool fabric via immobilizing lysozymes. Bioprocess Biosyst Eng 32:633–639

    Article  CAS  Google Scholar 

  • Weber P, Kratzin H, Brockow K, Ring J, Steinhart H, Paschke A (2009) Lysozyme in wine: a risk evaluation for consumers allergic to hen’s egg. Mol Nutr Food Res 53:1469–1477

    Article  CAS  Google Scholar 

  • Wedmore I, McManus JG, Pusateri AE, Holcomb JB (2006) A special report on the chitosan-based hemostatic dressing experience in current combat operations. J Trauma 60:655–658

    Article  Google Scholar 

  • Xie T, Wang A, Huang L, Li H, Chen Z, Wang Q, Yin X (2009) Recent advance in the support and technology used in enzyme immobilization. Afr J Biotechnol 8:4724–4733

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vincent Edwards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, J.V., Prevost, N.T., Condon, B. et al. Covalent attachment of lysozyme to cotton/cellulose materials: protein verses solid support activation. Cellulose 18, 1239–1249 (2011). https://doi.org/10.1007/s10570-011-9563-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9563-6

Keywords

Navigation