Skip to main content
Log in

Dynamic interaction between the growing Ca–P minerals and bacterial cellulose nanofibers during early biomineralization process

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bone is a composite of organic phase (collagen nanofibers) and Ca–P minerals (hydroxylapatite) and an important biological structure in the field of biomineralization, but the interaction between organic matrixes and inorganic minerals is still too ambiguous. In order to investigate the interaction between the growing Ca–P minerals and organic nanofibers during early biomineralization process, bacterial cellulose (BC) nanofibers were used as templates to mimic collagen nanofibers for Ca–P minerals deposition via biomineralization for periods from as short as 4–72 h. Our findings pointed out that the resultant Ca–P minerals formed on BC nanofibers were platelet-like calcium-deficient HAp which was analogous to those in natural bone tissue. Strikingly, we found that the growth of Ca–P minerals had influence on the structure and properties of BC nano-templates during biomineralization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149

    Article  Google Scholar 

  • Bäckdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med 2(6):320–330

    Article  Google Scholar 

  • Barud H, Ribeiro C, Crespi M, Martines M, Dexpert-Ghys J, Marques R, Messaddeq Y, Ribeiro S (2007) Thermal characterization of bacterial cellulose–phosphate composite membranes. J Therm Anal Calorim 87(3):815–818

    Article  CAS  Google Scholar 

  • Barud HS, de Araújo Júnior AM, Santos DB, de Assunção RMN, Meireles CS, Cerqueira DA et al (2008) Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim Acta 471(1–2):61–69

    Article  CAS  Google Scholar 

  • Bodin A, Concaro S, Brittberg M, Gatenholm P (2007) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med 1(5):406–408

    Article  CAS  Google Scholar 

  • Cao B, Mao C (2007) Oriented nucleation of hydroxylapatite crystals on spider dragline silks. Langmuir 23(21):10701–10705

    Article  CAS  Google Scholar 

  • Chow W, Lok S (2009) Thermal properties of poly(lactic acid)/organo-montmorillonite nanocomposites. J Therm Anal Calorim 95(2):627–632

    Article  CAS  Google Scholar 

  • Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11(3):403–411

    Article  CAS  Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12

    Google Scholar 

  • d’Almeida ALFS, Barreto DW, Calado V, d’Almeida JRM (2006) Effects of derivatization on sponge gourd (Luffa cylindrica) fibers. Polym Polym Compos 14(1):73–80

    Google Scholar 

  • d’Almeida A, Barreto D, Calado V, d’Almeida J (2008) Thermal analysis of less common lignocellulose fibers. J Therm Anal Calorim 91(2):405–408

    Article  Google Scholar 

  • Engholm JR, Happek U, Sievers AJ (1996) Observation of site-dependent relaxation of the OH vibrational stretch mode in fused silica. Chem Phys Lett 249(5–6):387–391

    Article  CAS  Google Scholar 

  • Fang B, Wan YZ, Tang TT, Gao C, Dai KR (2009) Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng 15:1091–1098

    Article  CAS  Google Scholar 

  • Franceschi E, Cascone I, Nole D (2008) Thermal, XRD and spectrophotometric study on artificially degraded woods. J Therm Anal Calorim 91(1):119–123

    Article  CAS  Google Scholar 

  • Grande CJ, Torres FG, Gomez CM, Carmen Bañó M (2009) Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 5(5):1605–1615

    Article  CAS  Google Scholar 

  • Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294(5547):1684–1688

    Article  CAS  Google Scholar 

  • Hirai A, Tsuji M, Horii F (2002) TEM study of band-like cellulose assemblies produced by acetobacter xylinum at 4 °C. Cellulose 9:105–113

    Article  CAS  Google Scholar 

  • Hong P, Fa C, Wei Y, Sen Z (2007) Surface properties and synthesis of the cellulose-based amphoteric polymeric surfactant. Carbohyd Polym 69(4):625–630

    Article  CAS  Google Scholar 

  • Hutchens SA, Benson RS, Evans BR, O’Neill HM, Rawn CJ (2006) Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 27(26):4661–4670

    Article  CAS  Google Scholar 

  • Keshk S, Sameshima K (2006) Influence of lignosulfonate on crystal structure and productivity of bacterial cellulose in a static culture. Enzyme Microb Tech 40(1):4–8

    Article  CAS  Google Scholar 

  • Kim HM, Rey C, Glimcher MJ (1996) X-ray diffraction, electron microscopy, and Fourier transform infrared spectroscopy of apatite crystals isolated from chicken and bovine calcified cartilage. Calcif Tissue Int 59(1):58–63

    Article  CAS  Google Scholar 

  • Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702–1706

    Article  CAS  Google Scholar 

  • Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915

    Article  CAS  Google Scholar 

  • Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci 94(17):9091–9095

    Article  CAS  Google Scholar 

  • Marras SI, Kladi KP, Tsivintzelis I, Zuburtikudis I, Panayiotou C (2008) Biodegradable polymer nanocomposites: the role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure. Acta Biomater 4(3):756–765

    Article  CAS  Google Scholar 

  • Martucci J, Vázquez A, Ruseckaite R (2007) Nanocomposites based on gelatin and montmorillonite. J Therm Anal Calorim 89(1):117–122

    Article  CAS  Google Scholar 

  • McMillan PF, Remmele RL (1986) Hydroxyl sites in SiO2 glass: a note on infrared and Raman spectra. Am Mineral 71(5/6):772–778

    CAS  Google Scholar 

  • Murakami M-A, Kaneko Y, Kadokawa J-I (2007) Preparation of cellulose-polymerized ionic liquid composite by in situ polymerization of polymerizable ionic liquid in cellulose-dissolving solution. Carbohyd Polym 69(2):378–381

    Article  CAS  Google Scholar 

  • Nada AMA, Hassan ML (2000) Thermal behavior of cellulose and some cellulose derivatives. Polym Degrad Stabil 67(1):111–115

    Article  CAS  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677

    Article  CAS  Google Scholar 

  • Sashina E, Janowska G, Zaborski M, Vnuchkin A (2007) Compatibility of fibroin/chitosan and fibroin/cellulose blends studied by thermal analysis. J Therm Anal Calorim 89(3):887–891

    Article  CAS  Google Scholar 

  • Shen Q, Chen Y, Wei H, Zhao Y, Wang D, Xu D (2005) Suspension effect of poly(styrene-ran-methacrylic acid) latex particles on crystal growth of calcium carbonate. Cryst Growth Des 5(4):1387–1391

    Article  CAS  Google Scholar 

  • Sottys J, Lisowski Z, Knapczyky J (1984) X-Ray diffraction study on the crystallinity index and the structure of the microcrystalline cellulose. Acta Pharm Technol 30(2):174–180

    CAS  Google Scholar 

  • Stupp SI, Braun PV (1997) Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors. Science 277(5330):1242–1248

    Article  CAS  Google Scholar 

  • Suñol JJ, Miralpeix D, Saurina J, Carrillo F, Colom X (2005) Thermal behavior of cellulose fibers with enzymatic or Na2CO3 treatment. J Therm Anal Calorim 80(1):117–121

    Article  Google Scholar 

  • Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26(4):419–431

    Article  CAS  Google Scholar 

  • Szcześniak L, Rachocki A, Tritt-Goc J (2008) Glass transition temperature and thermal decomposition of cellulose powder. Cellulose 15(3):445–451

    Article  Google Scholar 

  • Vallet-Regí M, Rodríguez-Lorenzo LM, Salinas AJ (1997) Synthesis and characterisation of calcium deficient apatite. Solid State Ionics 101–103(Part 2):1279–1285

    Article  Google Scholar 

  • Wan YZ, Hong L, Jia SR, Huang Y, Zhu Y, Wang YL, Jiang HJ (2006) Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Compos Sci Tech 66(11–12):1825–1832

    Article  CAS  Google Scholar 

  • Wan YZ, Huang Y, Yuan CD, Raman S, Zhu Y, Jiang HJ, He F, Gao C (2007) Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater Sci Eng C 27(4):855–864

    Article  CAS  Google Scholar 

  • Wang YL, Zhang SN, Mai YW, Wan YZ, Lim SH, He F, Huang Y (2009) Preparation and thermomechanical characterization of hydroxyapatite/bacterial cellulose nanocomposites. Nanotechnology Precis Eng 7(2):95–101

    CAS  Google Scholar 

  • Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28(1):271–298

    Article  CAS  Google Scholar 

  • Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng C 25(2):131–143

    Article  Google Scholar 

  • Zhang Z, Lee J-H, Lee S-H, Heo S-B, Pittman CU Jr (2008) Morphology, thermal stability and rheology of poly(propylene carbonate)/organoclay nanocomposites with different pillaring agents. Polymer 49(12):2947–2956

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grants 50872088, 50673076 and 50539060). Financial support was also from the State Key Basic Research (973) Program (Grant 2007CB936100) and the National Hi-Tech Research Development (863) Program (2009AA03Z311). The authors also thank Prof. Han Ming, postgraduate students Sun Ruitao, Yu Zhonghui and undergraduate student Dong Shuo from Shandong University of Technology for TEM analysis assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zao Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, C., Xiong, G.Y., Luo, H.L. et al. Dynamic interaction between the growing Ca–P minerals and bacterial cellulose nanofibers during early biomineralization process. Cellulose 17, 365–373 (2010). https://doi.org/10.1007/s10570-009-9371-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-009-9371-4

Keywords

Navigation