Skip to main content
Log in

Simulation of X-ray diffractograms relevant to the purported polymorphs cellulose IVI and IVII

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Diffractograms were simulated for model nanocrystals of cellulose Iβ, using numerical summation of radiation scattered from all carbon and oxygen atoms in the nanocrystal. Diffractogram peaks were sometimes displaced by a few degrees from positions calculated by the Bragg equation, as predicted in a published study based on a different mathematical approach. Simulated diffractograms showed 2 or 3 peaks, depending on the cross-sectional size and shape of the model nanocrystal. Some of the 2-peak diffractograms resembled published results for the purported polymorph cellulose IVI, or for cell-wall cellulose, supporting suggestions that cellulose IVI is simply cellulose I fragmented into nanocrystals with relatively small cross-sectional dimensions. A published diffractogram for cellulose IVII could not be simulated with acceptable precision, suggesting that this polymorph might have a crystal structure distinctly different from that of cellulose Iβ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Blackwell J, Kolpak FJ (1975) The cellulose microfibril as an imperfect array of elementary fibrils. Macromol 8:322–326

    Article  CAS  Google Scholar 

  • Brown PJ, Fox AG, Maslen EN, O’Keefe MA, Sabine TM, Willis BTM (1992) Interpretation of diffracted intensities. In: Wilson AJC (ed) International tables for crystallography, Chapt 6. Kluwer, Dordrecht/Boston/London

  • Buleon A, Chanzy H, Froment P (1982) Single crystals of cellulose IVII: influence of the cellulose molecular weight. J Polym Sci: Polym Phys Ed 20:1081–1088

    Article  CAS  Google Scholar 

  • Chanzy H, Imada K, Vuong R (1978) Electron diffraction from the primary wall of cotton fibers. Protoplasma 94:299–306

    Article  Google Scholar 

  • Chanzy H, Imada K, Mollard A, Vuong R, Barnoud F (1979) Crystallographic aspects of sub-elementary cellulose fibrils occurring in the wall of rose cells cultured in vitro. Protoplasma 100:303–316

    Article  CAS  Google Scholar 

  • Delmer DP, Amor Y (1995) Cellulose biosynthesis. Plant Cell 7:987–1000

    Article  CAS  Google Scholar 

  • Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43:1407–1420

    Article  CAS  Google Scholar 

  • Finkenstadt VL, Millane RP (1998) Crystal structure of valonia cellulose I. Macromol 31:7776–7783

    Article  CAS  Google Scholar 

  • Foreman DW, Jakes KA (1993) X-ray diffractometric measurement of microcrystalline size, unit cell dimensions, and crystallinity: application to cellulosic marine textiles. Textile Res J 63:455–464

    Article  CAS  Google Scholar 

  • French AD, Miller DP, Aabloo A (1993) Miniature crystal models of cellulose polymorphs and other carbohydrates. Int J Biol Macromol 15:30–36

    Article  CAS  Google Scholar 

  • Gardner KH, Blackwell J (1974) The structure of native cellulose. Biopolymers 13:1975–2001

    Article  CAS  Google Scholar 

  • Gardiner ES, Sarko A (1985) Packing analysis of carbohydrates and polysaccharides. 16. The crystal structures of celluloses IVI and IVII. Can J Chem 63:173–180

    Article  CAS  Google Scholar 

  • Gjonnes J, Norman N (1958) The use of half width and position of the lines in the X-ray diffractograms of native cellulose to characterize the structural properties of the samples. Acta Chem Scand 12:2028–2033

    Article  CAS  Google Scholar 

  • Helbert W, Sugiyama J, Ishihara M, Yamanaka S (1997) Characterization of native crystalline cellulose in the cell walls of Oomycota. J Biotechnol 57:29–37

    Article  CAS  Google Scholar 

  • Hutino K, Sakurada I (1940) A fourth modification of cellulose. Naturwissenschaften 28:577–578

    Article  CAS  Google Scholar 

  • Ioelovich M, Larina E (1999) Parameters of crystalline structure and their influence on the reactivity of cellulose I. Cellul Chem Technol 33:1–12

    Google Scholar 

  • Ishikawa A, Okano T, Sugiyama J (1997) Fine structures and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. Polymer 38:463–468

    Article  CAS  Google Scholar 

  • Isogai A, Usuda M, Kato T, Uryu T, Atalla RH (1989) Solid-state CP/MAS 13C NMR study of cellulose polymorphs. Macromol 22:3168–3172

    Article  CAS  Google Scholar 

  • Iyer PB, Sreenivasan S, Chidambareswaran PK, Patil NB, Sundaram V (1991) Induced crystallization of cellulose in never-dried cotton fibers. J Appl Polym Sci 42:1751–1757

    Article  CAS  Google Scholar 

  • Jeffery JW (1971) Methods in X-ray crystallography. Academic Press, London, pp 14–17 and 93

  • Jennings LD (1984) The polarization ratio of crystal monochromators. Acta Cryst A40:12–16

    CAS  Google Scholar 

  • Klug HP, Alexander LE (1954) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York, pp 491–538

    Google Scholar 

  • Kulshreshtha AK (1979) A review of the literature on the formation of cellulose IV, its structure, and its significance in the technology of rayon manufacture. J Text Inst 70:13–18

    Article  CAS  Google Scholar 

  • Lai-Kee-Him J, Chanzy H, Müller M, Putaux J-L, Imai T, Bulone V (2002) In vitro versus in vivo cellulose microfibrils from plant primary wall synthases: structural differences. J Biol Chem 277:36931–36939

    Article  CAS  Google Scholar 

  • Leroux O, Cavalier DM, Liepman A, Keegstra K (2006) Biosynthesis of plant cell wall polysaccharides––a complex process. Curr Opin Plant Biol 9:621–630

    Article  CAS  Google Scholar 

  • Newman RH (1999) Estimation of the lateral dimensions of cellulose nanocrystals using 13C NMR signal strengths. Solid State NMR 15:21–29

    Article  CAS  Google Scholar 

  • Newman RH, Davidson TD (2004) Molecular conformations at the cellulose-water interface. Cellulose 11:23–32

    Article  CAS  Google Scholar 

  • Nishimura H, Okano T, Asano I (1981) Fine structure of wood cell walls II. Nanocrystal size and several peak positions of X-ray diagram of cellulose I. Mokuzai Gakkaishi 27:709–715

    CAS  Google Scholar 

  • Nishimura H, Okano T, Asano I (1982) Fine structure of wood cell walls III. On the natural occurrence of cellulose IVI in red meranti. Mokuzai Gakkaishi 28:484–485

    CAS  Google Scholar 

  • Okano T, Koyanagi A (1986) Structural variation of native cellulose related to its source. Biopolymers 25:851–861

    Article  CAS  Google Scholar 

  • Roche E, Chanzy H (1981) Electron microscopy study of the transformation of cellulose I into cellulose IIII in Valonia. Int J Biol Macromol 3:201–206

    Article  CAS  Google Scholar 

  • Saxena IM, Brown RM Jr (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96:9–21

    Article  CAS  Google Scholar 

  • Sugiyama J, Okano T (1989) Crystal deformation of crystal due to electron irradiation. In: Kennedy JF, Philips GO, Williams PA (eds) Cellulose––structural and functional aspects. Ellis Harwood, London, pp 75–80

    Google Scholar 

  • Sugiyama J, Harada H, Saiki H (1987) Crystalline morphology of Valonia macrophysa cellulose IIII revealed by direct lattice imaging. Int J Biol Macromol 9:122–130

    Article  CAS  Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromol 24:4168–4175

    Article  CAS  Google Scholar 

  • Thimm JC, Burritt DJ, Sims IM, Newman RH, Ducker WA, Melton LD (2002) Celery (Apium graveolens) parenchyma cell walls: cell walls with minimal xyloglucan. Physiol Plant 116:164–171

    Article  CAS  Google Scholar 

  • Wada M, Sugiyama J, Okano T (1994) The monoclinic phase is dominant in wood celluloses. Mokuzai Gakkaishi 40:50–56

    CAS  Google Scholar 

  • Wada M, Heux L, Sugiyama J (2004) Polymorphism of cellulose I family: reinvestigation of cellulose IVI. Biomacromol 5:1385–1391

    Article  CAS  Google Scholar 

  • Wardrop AB (1949) Micellar organization in primary cell walls. Nature 164:366

    Article  CAS  Google Scholar 

  • Wellard HJ (1954) Variation in the lattice spacing of cellulose. J Polym Sci 13:471–476

    Article  CAS  Google Scholar 

  • Woodcock C, Sarko A (1980) Packing analysis of carbohydrates and polysaccharides. 11. Molecular and crystal structure of native ramie cellulose. Macromol 13:1183–1187

    Article  CAS  Google Scholar 

  • Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The computer software was sketched while the author was working in a New Zealand Marsden Fund contract (IRL902), and was developed into the present version through capability funding from the New Zealand Ministry for Research Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger H. Newman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newman, R.H. Simulation of X-ray diffractograms relevant to the purported polymorphs cellulose IVI and IVII . Cellulose 15, 769–778 (2008). https://doi.org/10.1007/s10570-008-9225-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-008-9225-5

Keywords

Navigation