Skip to main content
Log in

PEGylation of chitosan for improved solubility and fiber formation via electrospinning

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

PEG-N-chitosan and PEG-N,O-chitosan were synthesized via reductive amination and acylation of chitosan, respectively. The structures were confirmed by FTIR and H1NMR. The extents of PEGylation increased with reducing chain lengths of either chitosan (M v = 137–400 kDa) or poly(ethyelene glycol) (PEG, M n = 5002 kDa). Water solubility were easily achieved at degree of substitution (DS) as low as 0.2 for either derivtive whereas the PEG-N,O-chitosan at DS = 1.5 was soluble in organic solvents, including CHCl3, DMF, DMSO and THF. None of the aqueous solutions of PEG-N-chitosan or PEG-N,O-chitosan alone could be electrospun into fibers. Electrospinning of PEG550-N,O-chitosan145 at 25% in DMF produced fibrous structure intermixed with beads. The efficiency of fiber formation and the uniformity of fibers were improved by increasing the solution viscosity using a cosolvent or reducing the solution surface tensions with a non-ionic surfactant. Ultra-fine fibers with diameters ranging from 40 nm to 360 nm and an average diameter of 162 nm were efficiently generated from electrospinning of 15% PEG550-N,O-chitosan145 in 75/25 (v/v) THF/DMF cosolvents with 0.5% Triton X-100TM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Avigad GA (1983) Simple spectrophotometric determination of formaldehyde and other aldehydes: application to periodate-oxidized glycol systems. Anal Biochem 134(2):499–504

    Article  CAS  Google Scholar 

  • Bentley MD, Roberts MJ, Harris JM (1998) Reductive amination using poly(ethylene glycol) acetaldehyde hydrate generated in situ: Applications to chitosan and lysozyme. J Pharmaceutical Sci 87(11):1446–1449

    Article  CAS  Google Scholar 

  • Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang MQ (2005a) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26:6176–6184

    Article  CAS  Google Scholar 

  • Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang MQ (2005b) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Control Release 103:609–624

    Article  CAS  Google Scholar 

  • Binias D, Boryniec S, Binias W (2005) Studies of the structure of polysaccharides in the process of alkaline treatment of dibutyrylchitin fibres. Fibres Text East Eur 13(5):137–140

    CAS  Google Scholar 

  • Anjali Devi D, Smitha B, Sridhar S, Aminabhavi TM (2006) Novel crosslinked chitosan /poly(vinylpyrrolidone) blend membranes for dehydrating tetrahydrofuran by the pervaporation technique. J Membr Sci 280:45–53

    Article  CAS  Google Scholar 

  • Duan B, Dong C, Yuan X, Yao K (2004) Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide). J Biomater Sci Polym Ed 15:797–811

    Article  CAS  Google Scholar 

  • Geng X, Kwon OH, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26:5427–5432

    Article  CAS  Google Scholar 

  • Gorochovceva N, Makuška R (2004) Synthesis and study of water-soluble chitosan-O-poly (ethylene glycol) graft copolymers. Eur Polym J 40:685–691

    Article  CAS  Google Scholar 

  • Gorochovceva N, Naderi A, Dedinaite A, Makuska R (2005) Chitosan-N-poly(ethylene glycol) brush copolymers: Synthesis and adsorption on silica surface. Eur Polym J 41:2653–2662

    Article  CAS  Google Scholar 

  • Guo TY, Xia YQ, Wang J, Song MD, Zhang BH (2005) Chitosan beads as molecularly imprinted polymer matrix for selective separation of proteins. Biomaterials 26:5737–5745

    Article  CAS  Google Scholar 

  • Harris JM (1992) Poly (ethylene glycol) chemistry: biotechnical and biomedical applications. Plenum Press, New York

    Google Scholar 

  • Jayakumar R, Prabaharan M, Reis RL, Mano JF (2005) Graft copolymerized chitosan–present status and applications. Carbohyd Polym 62:142–158

    Article  CAS  Google Scholar 

  • Li L, Hsieh YL (2006) Chitosan bicomponent nanofibers and nanoporous fibers. Carbohyd Research 341:374–381

    Article  CAS  Google Scholar 

  • Nishimura S, Kohgo O, Kurita K, Kuzuhara H (1991) Chemospecific manipulations of a rigid polysaccharide: syntheses of novel chitosan derivatives with excellent solubility in common organic solvents by regioselective chemical modifications. Macromolecules 24:4745–4748

    Article  CAS  Google Scholar 

  • Ohkawa K, Cha D, Kim H, Nishida A, Yamamoto H (2004) Electrospinning of Chitosan. Macromol Rapid Commun 25:1600–1605

    Article  CAS  Google Scholar 

  • Ouchi T, Nishizawa H, Ohya Y (1998) Aggregation phenomenon of PEG-grafted chitosan in aqueous solution. Polymer 39:5171–5175

    Article  CAS  Google Scholar 

  • Park WH, Jeong L, Yoo DI, Hudson S (2004) Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers. Polymer 45:7151–7157

    Article  CAS  Google Scholar 

  • Roberts GAF, Domszy JG (1982) Determination of the viscometric constants for chitosan. Int J Biol Macromol 4:374–377

    Article  CAS  Google Scholar 

  • Shawon J, Sung C (2004) Electrospinning of polycarbonate nanofibers with solvent mixtures THF and DMF. J Mater Sci 39:4605–4613

    Article  CAS  Google Scholar 

  • Spasova M, Manolova N, Paneva D, Rashkov I (2004) Preparation of chitosan-containing nanofibres by electrospinning of chitosan/poly(ethylene oxide) blend solutions. e-Polymers 056:1–12

    Google Scholar 

  • Sugimoto M, Morimoto M, Sashiwa H, Saimoto H, Shigemasa Y (1998) Preparation and characterization of water-soluble chitin and chitosan derivatives. Carbohyd Polym 36:49–59

    Article  CAS  Google Scholar 

  • Tirelli N, Lutolf MP, Napoli A, Hubbell JA (2002) Poly (ethylene glycol) block copolymers. Rev Mol Biotechnol 90:3–15

    Article  CAS  Google Scholar 

  • Wang SC, Wei TC, Chen WB, Tsao HK (2004) Effects of surfactant micelles on viscosity and conductivity of poly(ethylene glycol) solutions. The J Chem Phys 120:4980–4988

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Lo Hsieh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, J., Hsieh, YL. PEGylation of chitosan for improved solubility and fiber formation via electrospinning. Cellulose 14, 543–552 (2007). https://doi.org/10.1007/s10570-007-9122-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-007-9122-3

Keywords

Navigation