Skip to main content
Log in

Influence of Chitosan Molecular Weight and Poly(ethylene oxide): Chitosan Proportion on Fabrication of Chitosan Based Electrospun Nanofibers

  • Natural Polymers
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Fabrication of electrospun chitosan nanofibers is still a controversial issue in publications. Although regarding the lots of reports, mixtures of chitosan with a hydrophilic synthetic polymer such as polyethylene oxide (PEO) have been electrospun successfully, abundance of partly contradictory protocols in which one variable has been surveyed in each study is unfortunately baffling. In the present study, influence of three considerable parameters including the average molecular weight of chitosan, chitosan solution concentration and the mass ratio of polyethylene oxide to chitosan at the mixtures on electrospinning possibility as well as the quality of as-spun fibers is investigated. Eventually, the necessities for obtaining the best results are introduced followed by further analysis of optimized nanofibers using atomic force microscopy. According to our results, the blend solutions prepared from the low molecular weight (LMW) chitosan and PEO are efficient for reproducible production of bead-free electrospun nanofibers even in low proportion of polyethylene oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Liang, B. S. Hsiao, and B. Chu, Adv. Drug Delivery Rev. 59, 1392 (2007).

    Article  CAS  Google Scholar 

  2. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003).

    Article  CAS  Google Scholar 

  3. M. Rinaudo, Prog. Polym. Sci. 31, 603 (2006).

    Article  CAS  Google Scholar 

  4. R. Muzzarelli and C. Muzzarelli, “Chitosan Chemistry: Relevance to the Biomedical Sciences,” in Polysaccharides I. Structure, Characterization and Use, Ed. by T. Heinze (Springer-Verlag, Berlin; Heidelberg, 2005), p. 151.

    Chapter  Google Scholar 

  5. I.-Y. Kim, S.-J. Seo, H.-S. Moon, M.-K. Yoo, I.-Y. Park, B.-C. Kim, and C.-S. Cho, Biotechnol. Adv. 26, 1 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. H. Park, B. Choi, J. Hu, and M. Lee, Acta Biomater. 9, 4779 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. F. Croisier and C. Jérôme, Eur. Polym. J. 49, 780 (2013).

    Article  CAS  Google Scholar 

  8. M. Karimi, P. Avci, R. Mobasseri, M. R. Hamblin, and H. Naderi-Manesh, J. Nanopart. Res. 15, 1 (2013).

    Article  CAS  Google Scholar 

  9. M. Karimi, P. Avci, M. Ahi, T. Gazori, M. R. Hamblin, and H. Naderi-Manesh, J. Nanopharm. Drug Delivery 1, 266 (2013).

    Article  Google Scholar 

  10. S. A. Agnihotri, N. N. Mallikarjuna, and T. M. Aminabhavi, J. Controlled Release 100, 5 (2004).

    Article  CAS  Google Scholar 

  11. N. Bhattarai, J. Gunn, and M. Zhang, Adv. Drug Delivery Rev. 62, 83 (2010).

    Article  CAS  Google Scholar 

  12. K. Pospiskova and I. Safarik, Carbohydr. Polym. 96, 545 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. S. Datta, L. R. Christena, and Y. R. S. Rajaram, Biotechnology 3, 1 (2013).

    Google Scholar 

  14. J. Wang and C. Chen, Bioresour. Technol. 160, 129 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. J. Wang, W. Xu, L. Chen, X. Huang, and J. Liu, Chem. Eng. J. 251, 25 (2014).

    Article  CAS  Google Scholar 

  16. M. Aliabadi, M. Irani, J. Ismaeili, H. Piri, and M. J. Parnian, Chem. Eng. J. 220, 237 (2013).

    Article  CAS  Google Scholar 

  17. K. Sunand and Z. Li, eXPRESS Polym. Lett. 5, 342 (2011).

    Article  CAS  Google Scholar 

  18. K. Ziani, C. Henrist, C. Jérôme, A. Aqil, J. I. Maté, and R. Cloots, Carbohydr. Polym. 83, 470 (2011).

    Article  CAS  Google Scholar 

  19. K. Ohkawa, D. Cha, H. Kim, A. Nishida, and H. Yamamoto, Macromol. Rapid Commun. 25, 1600 (2004).

    Article  CAS  Google Scholar 

  20. H. Homayoni, S. A. H. Ravandi, and M. Valizadeh, Carbohydr. Polym. 77. 656 (2009).

    Article  CAS  Google Scholar 

  21. P. Sangsanoh and P. Supaphol, Biomacromolecules 7, 2710 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen, and M. Zhang, Biomaterials 26, 6176 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. M. Pakravan, M.-C. Heuzey, and A. Ajji, Polymer 52, 4813 (2011).

    Article  CAS  Google Scholar 

  24. B. Duan, C. Dong, X. Yuan, and K. Yao, J. Biomater. Sci., Polym. Ed. 15, 797 (2004).

    Article  CAS  Google Scholar 

  25. M. Spasova, N. Manolova, D. Paneva, and I. Rashkov, e-Polym. 4, 624 (2004).

    Google Scholar 

  26. Y.-T. Jia, J. Gong, X.-H. Gu, H.-Y. Kim, J. Dong, and X.-Y. Shen, Carbohydr. Polym. 67, 403 (2007).

    Article  CAS  Google Scholar 

  27. N. Charernsriwilaiwat, T. Rojanarata, T. Ngawhirunpat, and P. Opanasopit, Int. Wound J. 11, 215 (2014).

    Article  PubMed  Google Scholar 

  28. A. Cooper, N. Bhattarai, F. M. Kievit, M. Rossol, and M. Zhang, Phys. Chem. Chem. Phys. 13, 9969 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Q. Li, X. Wang, X. Lou, H. Yuan, H. Tu, B. Li, and Y. Zhang, Carbohydr. Polym. 130, 166 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. J. D. Schiffman and C. L. Schauer, Biomacromolecules 8, 594 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Zainuddin, J. Albinska, P. Ulanski, and J. Rosiak, J. Radioanal. Nucl. Chem. 253, 339 (2002).

    Article  CAS  Google Scholar 

  32. M. Doytcheva, D. Dotcheva, R. Stamenova, A. Orahovats, C. Tsvetanov, and J. Leder, J. Appl. Polym. Sci. 64, 2299 (1997).

    Article  CAS  Google Scholar 

  33. E. Mirzaei, R. Faridi-Majidi, M. A. Shokrgozar, and F. Asghari Paskiabi, Nanomed. J. 1, 137 (2014).

    Google Scholar 

  34. Y.-Y. Wang, L.-X. Lü, Z.-Q. Feng, Z.-D. Xiao, and N.-P. Huang, Biomed. Mater. 5, 054112 (2010).

    Article  PubMed  Google Scholar 

  35. R. A. Muzzarelli, Mar. Drugs 9, 1510 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. C. Kriegel, K. Kit, D. J. McClements, and J. Weiss, Polymer 50, 189 (2009).

    Article  CAS  Google Scholar 

  37. R. R. Klossner, H. A. Queen, A. J. Coughlin, and W. E. Krause, Biomacromolecules 9, 2947 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. J.-F. Zhang, D.-Z. Yang, F. Xu, Z.-P. Zhang, R.-X. Yin, and J. Nie, Macromolecules 42, 5278 (2009).

    Article  CAS  Google Scholar 

  39. K. Desai, K. Kit, J. Li, and S. Zivanovic, Biomacromolecules 9, 1000 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. X. Geng, O.-H. Kwon, and J. Jang, Biomaterials 26, 5427 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. L. Martinova and D. Lubasova, Res. J. Text. Apparel 12, 72 (2008).

    Article  CAS  Google Scholar 

  42. P. Sorlier, C. Viton, and A. Domard, Biomacromolecules 3, 1336 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. J. Roussy, M. Van Vooren, and E. Guibal, J. Appl. Polym. Sci. 98, 2070 (2005).

    Article  CAS  Google Scholar 

  44. C. Pillai and C. P. Sharma, Trends Biomater. Artif. Organs 22, 179 (2009).

    Google Scholar 

  45. C. Pillai, W. Paul, and C. P. Sharma, Prog. Polym. Sci. 34, 641 (2009).

    Article  CAS  Google Scholar 

  46. G. Macfie, R. G. Compton, and H. R. Corti, J. Chem. Eng. Data 46, 1300 (2001).

    Article  CAS  Google Scholar 

  47. K. Ohkawa, K.-I. Minato, G. Kumagai, S. Hayashi, and H. Yamamoto, Biomacromolecules 7, 3291 (2006).

    Article  CAS  Google Scholar 

  48. H. Homayoni, S. A. H. Ravandi, and M. Valizadeh, J. Appl. Polym. Sci. 113, 2507 (2009).

    Article  CAS  Google Scholar 

  49. R. P. Gonçalves, W. H. Ferreira, R. F. Gouvêa, and C. T. Andrade, Mater. Res. 20, 984 (2017).

    Article  Google Scholar 

  50. J. Grobelny, F. W. DelRio, N. Pradeep, D.-I. Kim, V. A. Hackley, and R. F. Cook, “Size Measurement of Nanoparticles using Atomic Force Microscopy,” in Characterization of Nanoparticles Intended for Drug Delivery, Ed. by S. E. McNeil (Springer, New York, 2011), p. 71.

    Chapter  Google Scholar 

  51. P. Markiewicz and M. C. Goh, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.—Process., Meas., Phenom. 13, 1115 (1995).

    Article  CAS  Google Scholar 

  52. J. Širc, R. Hobzová, N. Kostina, M. Munzarová, M. Juklickova, M. Lhotka, S. Kubinova, A. Zajicova, and J. Michalek, J. Nanomater. 2012, 121 (2012).

    Article  Google Scholar 

  53. D. Reneker, W. Kataphinan, A. Theron, E. Zussman, and A. Yarin, Polymer 43, 6785 (2002).

    Article  CAS  Google Scholar 

  54. A. K. Aljehani, M. A. Hussaini, M. A. Hussain, N. S. Alothmany, and R. W. Aldhaheri, in Proceedings of “IEEE Middle East Conference on Biomedical Engineering (MECBME),” Doha, Qatar, 2014 (Doha, 2014), p. 379.

    Book  Google Scholar 

  55. C. Xu, F. Yang, S. Wang, and S. Ramakrishna, J. Biomed. Mater. Res., Part A 71, 154 (2004).

    Article  CAS  Google Scholar 

  56. T. P. Kunzler, T. Drobek, M. Schuler, and N. D. Spencer, Biomaterials 28, 2175 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Naderi-Manesh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohi, A.N., Naderi-Manesh, H., Soleimani, M. et al. Influence of Chitosan Molecular Weight and Poly(ethylene oxide): Chitosan Proportion on Fabrication of Chitosan Based Electrospun Nanofibers. Polym. Sci. Ser. A 60, 471–482 (2018). https://doi.org/10.1134/S0965545X18040077

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X18040077

Navigation