Skip to main content
Log in

The orbit of Aegaeon and the 7:6 Mimas-Aegaeon resonance

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Aegaeon (S/2008 S 1) is the last satellite discovered by the Cassini spacecraft at the end of the 2000 s. Like the satellites Methone and Anthe, it is involved in mean motion resonance with the mid-sized Mimas. In this work, we give a detailed analysis of the current orbit of Aegaeon identifying the resonant, secular and long-term perturbations due to Mimas and the oblateness of Saturn, and the effects of Tethys. For this task, we perform thousands of numerical simulations of full equations of motion of ensembles of small bodies representing clones of Aegaeon. We have mapped the domain of the 7:6 Mimas-Aegaeon resonance in the phase space of the semi-major axis and eccentricity. It displays a large area dominated by regular motions associated with the 7:6 corotation resonance surrounded by chaotic layers. Aegaeon is currently located very close to the periodic orbit of the resonance, which extends up to eccentricities \(\sim 0.025\) centered at semi-major axis \(\sim 168,028\) km. We show that the current orbit of Aegaeon has an important forced component in eccentricity due to the 7:6 resonance. The orbital inclination of Aegaeon has a non-negligible forced value due to long-term perturbations of Mimas. These two forced modes explain the complex perturbed orbit of Aegaeon without requiring the co-existence of multiple resonances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Brouwer, D., Clemence, G.M.: Methods of Celestial Mechanics. Academic Press, New York (1961)

    MATH  Google Scholar 

  • Callegari, N., Jr., Yokoyama, T.: Dynamics of two satellites in the 2:1 mean-motion resonance: application to the case of enceladus and dione. Celest. Mech. Dyn. Astr. 98, 5–30 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Callegari, N., Jr., Yokoyama, T.: Long-term dynamics of Methone, Anthe and Pallene. n: Icy Bodies of the Solar System, Proceedings of the International Astronomical Union, IAU Symposium, pp. 161–166 (2010)

  • Callegari, N., Jr., Yokoyama, T.: Numerical exploration of resonant dynamics in the system of Saturnian inner Satellites. Planet. Space Sci. 58, 1906–1921 (2010)

    Article  ADS  Google Scholar 

  • Callegari, N., Jr., Yokoyama, T.: Dynamics of the 11:10 corotation and lindblad resonances with mimas, and application to anthe. Icarus 348, 113820 (2020)

    Article  Google Scholar 

  • Callegari, N., Jr., Rodríguez, A., Ceccatto, D.T.: The current orbit of methone (S/2004 S 1). Celest. Mech. Dyn. Astr. 133, 49 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Charnoz, S., Salmon, J., Crida, A.: The recent formation of Saturn’s moonlets from viscous spreading of the main rings. Nature 465(7299), 752–754 (2010)

    Article  ADS  Google Scholar 

  • El Moutamid, M., Renner, S., Sicardy, B.: Coupling between corotation and Lindblad resonances in the elliptic planar three-body problem. Celest. Mech. Dyn. Astr. 118, 235–252 (2014)

    Article  ADS  MATH  Google Scholar 

  • Everhart, E.: An efficient integrator that uses Gauss-Radau spacings. IAU Coloquium 83, 185–202 (1985)

    ADS  Google Scholar 

  • Hedman, M.M., Murray, C.D., Cooper, N.J., Tiscareno, M.S., Beurle, K., Evans, M.W., Burns, J.A.: Three tenous rings/arcs for three tiny moons. Icarus 199, 378–386 (2009)

    Article  ADS  Google Scholar 

  • Hedman, M.M., Cooper, N.J., Murray, C.D., Beurle, K., Evans, M.W., Tiscareno, M.S., Burns, J.A.: Aegaeon (Saturn LIII), a G-ring object. Icarus 207, 433–447 (2010)

    Article  ADS  Google Scholar 

  • Jacobson, R.A., Antreasian, P.G., Bordi, J.J., Criddle, K.E., Ionasescu, R., Jones, J.B., Mackenzie, R.A., Meek, M.C., Parcher, D., Pelletier, F.J., Owen, W.M., Jr., Roth, D.C., Roundhill, I.M., Stauch, J.R.: The gravity field of the saturnian system from satellite observations and spacecraft tracking data. Astron. J. 132, 2520–2526 (2006)

    Article  ADS  Google Scholar 

  • Madeira, G., Sfair, R., Mourão, D. C., & Giuliatti Winter, S. M.: Production and fate of the G ring arc particles due to Aegaeon (Saturn LIII). Mon. Notices Royal Astron. 475(4), 5474–5479 (2018)

  • Munõz-Gutiérrez, M.A., Giuliatti Winter, S.: Long-term evolution and stability of saturnian small satellites: aegaeon, methone, anthe and pallene. Mon. Not. R. Astron. Soc. 470, 3750–3764 (2017)

    Article  ADS  Google Scholar 

  • Murray, C.: D, Dermott. Cambridge University Press, S. F. Solar System Dynamics, Cambridge (1999)

    Google Scholar 

  • Porco, C. C. S/2004 S 1 and S/2004 S 2. IAU Circ. 8401 (2004 August 16) (2004)

  • Porco, C. C. S/2007 S 4. IAU Circ. 8857 (2007 July 18) (2007)

  • Porco, C. C. S/2008 S 1. IAU Circ. 9023 (2009 March 3) (2009)

  • Porco, C.C., Thomas, P.C., Weiss, J.W., Richardson, D.C.: Saturn’s small inner satellites: clues to their origins. Science 318, 1602–1607 (2007)

    Article  ADS  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran, p. 77. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  • Renner, S., Sicardy, B.: Use of the geometric elements in numerical simulations. Celest. Mech. Dyn. Astron. 94, 237–248 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Rodríguez, A., Callegari, N., Jr.: Dynamical stability in the vicinity of saturnian small moons. The cases of aegaeon, methone, anthe and pallene. Mon. Not. R. Astron. Soc. 506, 5093–5107 (2021)

  • Rodríguez, A., Callegari Jr., N., Gimenez, K. The migration of Mimas and the implications for the resonant motion of small Saturnian moons. Celest. Mech. Dyn. Astr. submitted - this Issue (2022)

  • Spitale, J.N., Jacobson, R.A., Porco, C.C., Owen, W.M., Jr.: The orbits of saturn’s small satellites derived from combined historic and cassini imaging observations. Astron. J. 132, 792–810 (2006)

    Article  Google Scholar 

  • Thomas, P.C., Helfenstein, P.: The small inner satellites of saturn: shapes, structures and some implications. Icarus 344, 113355 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to XX Brazilian Colloquium on Orbital Dynamics (2021 virtual Edition), and Tadashi Yokoyama.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Callegari Jr..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

NCJ is grateful to Fapesp (Sao Paulo State Research Funding Agency), for the processes 2019/15162-2, 2020/06807-7. AR is grateful to FAPERJ (process 210.419/2022).

Appendix: Initial conditions and parameters

Appendix: Initial conditions and parameters

Table 2 gives the initial osculating elements and masses of the mid-sized satellites of Saturn and Aegaeon provided by Horizons system of ephemerides at date January 01, 2016.

The physical data for Saturn are \(M_S=5.6834\times 10^{26}\) kg, \(R_S=60,268\pm 4\) km (equatorial radius), \(J_2=0.01629071\) and \(J_4=-0.0009358\) (Jacobson et al. 2006).

Table 2 Orbital elements and masses of Saturnian satellites taken from the Horizons system refereed to date 2016-January-01, 00:00. Values collected from the update August 08, 2019. For Mimas and Aegaeon, we also show the geometric elements calculated as described in Sect. 2. The assumption of significant digits is purely formal. \(\omega \), \(\Omega \) are the argument of the pericenter and the longitude of ascending node, respectively

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Callegari, N., Rodríguez, A. The orbit of Aegaeon and the 7:6 Mimas-Aegaeon resonance. Celest Mech Dyn Astron 135, 21 (2023). https://doi.org/10.1007/s10569-023-10125-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-023-10125-8

Keywords

Navigation