Skip to main content
Log in

Orbit averaging applied to inverse-square perturbations

Application to coma drag, thermal radiation pressure, and heliocentric solar sailing

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper derives equations of motion for the mean elements under an inverse-square perturbing acceleration that is a function of latitude and longitude in an inertial frame. Equations of motion for the mean elements are first derived with a perturbing acceleration described by Fourier series in true anomaly. Fourier series in true anomaly are found for spherical harmonics expansions of the perturbing acceleration in the radial, in-track, and cross-track (RIC) frame. Additionally, the rotation of a perturbing acceleration described using spherical harmonics expansions in the inertial frame into the RIC frame is provided. An analytical solution for the osculating elements is derived and used to find an analytical osculating-to-mean element conversion. Analytical and numerical characterization of the osculation magnitude about the mean elements provides important information for trajectory design and spacecraft safety. The contributions of higher-order effects not captured by first-order orbit averaging are discussed. Finally, these results are applied to a comet-orbiter with an inertially fixed attitude and shown to track well even when the dynamics used in the averaging procedure are approximate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

No datasets were used or generated as part of this work, data sharing not applicable.

References

  • Accomazzo, A., Ferri, P., Lodiot, S., et al.: Rosetta following a living comet. Acta Astronautica 126, 190–198 (2016). https://doi.org/10.1016/j.actaastro.2016.04.023

    Article  ADS  Google Scholar 

  • A’Hearn, M.F., Belton, M.J.S., Delamere, W.A., et al.: Epoxi at comet hartley 2. Science 332(6036), 1396–1400 (2011). https://doi.org/10.1126/science.1204054

    Article  ADS  Google Scholar 

  • Berry, M., Healy, L.: The generalized Sundman transformation for propagation of high-eccentricity elliptical orbits. In: AAS/AIAA Space Flight Mechanics Meeting, San Antonio, 02-109 (2002)

  • Bielsa, C., Herfort, M.M.U.: Operational approach for the modeling of the coma drag force on rosetta. 24th International Symposium on Space Flight Dynamics (2014)

  • Byram, S.M., Scheeres, D.J., Combi, M.R.: Models for the comet dynamical environment. J. Guid. Control Dyn. 1, 30 (2007)

    Google Scholar 

  • Combi, M.R., Harris, W.M., Smyth, W.H.: Gas dynamics and kinetics in the cometary coma: Theory and observations. Comets II (2004)

  • Combi, M., Shou, Y., Fougere, N., et al.: The surface distributions of the production of the major volatile species, h2o, co2, co and o2, from the nucleus of comet 67p/Churyumov–Gerasimenko throughout the Rosetta mission as measured by the Rosina double focusing mass spectrometer. Icarus 335(113), 421 (2020). https://doi.org/10.1016/j.icarus.2019.113421

    Article  Google Scholar 

  • Feaga, L., A’Hearn, M., Sunshine, J., Groussin, O., Farnham, T.: Asymmetries in the distribution of h2o and co2 in the inner coma of comet 9p/tempel 1 as observed by deep impact. Icarus 190(2), 345–356 (2007). https://doi.org/10.1016/j.icarus.2007.04.009

    Article  ADS  Google Scholar 

  • Kaula, W.M.: Analysis of gravitational and geometric aspects of geodetic utilization of satellites. Geophys. J. R. Astronom. Soc. 5(2), 104–133 (1961). https://doi.org/10.1111/j.1365-246X.1961.tb00417.x

    Article  ADS  MATH  Google Scholar 

  • Kaula, W.M.: Theory of satellite geodesy: applications of satellites to geodesy. Dover Earth Science, Dover (2000)

    MATH  Google Scholar 

  • Moretto, M.J.: Novel Dynamical Analysis of Spacecraft and Natural Grains Orbiting an Active Comet. PhD thesis, University of Colorado Boulder (2022)

  • Moretto, M., McMahon, J.: Evolution of orbits about comets with arbitrary comae. Celest. Mech. Dyn. Astron. 132(6), 1–28 (2020)

    MathSciNet  MATH  Google Scholar 

  • Moretto, M., McMahon, J.: The perturbative effects of gas drag at active comets: Equations of motion for the mean elements under periodic inverse-square perturbations. AAS/AIAA Space Flight Mechanics Meeting, Virtual 21–411, 1–20 (2021)

    Google Scholar 

  • Mysen, E., Aksnes, K.: On the dynamical stability of the Rosetta orbiter i. Astron. Astrophys. 455(3), 1143–1155 (2006). https://doi.org/10.1051/0004-6361:20054307

    Article  ADS  MATH  Google Scholar 

  • Mysen, E., Rodionov, A., Crifo, J.: An analysis of outgassing pressure forces on the Rosetta orbiter using realistic 3d+t coma simulations. Astron. Astrophys. 512, 1 (2010)

    Article  Google Scholar 

  • Pätzold, M., Andert, T.P., Hahn, M., et al.: The Nucleus of comet 67P/Churyumov–Gerasimenko - Part I: The global view—nucleus mass, mass-loss, porosity, and implications. Mon. Not. R. Astronom. Soc. 483(2), 2337–2346 (2018). https://doi.org/10.1093/mnras/sty3171

    Article  ADS  Google Scholar 

  • Prieto, D.M., Graziano, B.P., Roberts, P.C.: Spacecraft drag modelling. Progr. Aerosp. Sci. 64, 56–65 (2014)

    Article  ADS  Google Scholar 

  • Quarta, A.A., Mengali, G., Aliasi, G.: Multi-revolution transfer for heliocentric missions with solar electric propulsion. Adv. Space Res. 55(2), 647–659 (2015). https://doi.org/10.1016/j.asr.2014.10.027

    Article  ADS  Google Scholar 

  • Scheeres, D.J.: On symmetric central configurations with application to satellite motion about rings. PhD thesis, University of Michigan (1992)

  • Scheeres, D.J.: Orbital Motion in Strongly Perturbed Environments : Applications to Asteroid. Comet and Planetary Satellite Orbiters. Springer, Berlin (2012)

    Book  Google Scholar 

  • Scheeres, D.J., Bhargava, S., Enzian, A.: A navigation model of the continuous outgassing field around a comet. TMO Progress Report 42 (2000)

  • Scheeres, D., Marzari, F., Tomasella, L., Vanzani, V.: Rosetta mission: satellite orbits around a cometary nucleus. Planet. Space Sci. 46(6), 649–671 (1998). https://doi.org/10.1016/S0032-0633(97)00200-6

    Article  ADS  Google Scholar 

  • Vallado, D., McClain, W.: Fundamentals of Astrodynamics and Applications, 2nd edn. Microcosm Press, El Segundo (2001)

    Google Scholar 

Download references

Acknowledgements

This work was funded by a NASA Space Technology Research Fellowship - Grant 80NSSC18K1184 . The authors thank Dr. Carlos Roithmayr for his valuable feedback on this paper, as well as two anonymous reviewers whose comments improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Moretto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Prosthaphaeresis formulae

$$\begin{aligned} \cos (m x)\cos (n x)= & {} \frac{1}{2}\left[ \cos ((m-n)x)+ \cos ((m+n)x)\right] \end{aligned}$$
(182)
$$\begin{aligned} \sin (m x)\sin (n x)= & {} \frac{1}{2}\left[ \cos ((m-n)x)- \cos ((m+n)x)\right] \end{aligned}$$
(183)
$$\begin{aligned} \sin (m x)\cos (n x)= & {} \frac{1}{2}\left[ \sin ((m-n)x)+\sin ((m+n)x)\right] \end{aligned}$$
(184)
$$\begin{aligned} \cos (m x)\sin (n x)= & {} \frac{1}{2}\left[ \sin ((m+n)x)-\sin ((m-n)x)\right] \end{aligned}$$
(185)

1.2 Series relations

$$\begin{aligned}{} & {} \sum \limits _{k=0}^{l_{max}} A_k\cos ((k-1)\nu )=\sum \limits _{k=-1}^{l_{max}-1} A_{k+1}\cos (k\nu )\nonumber \\{} & {} \quad =A_0 \cos (\nu )+A_1 +\sum \limits _{k=1}^{l_{max}-1}A_{k+1}\cos (k\nu ) \end{aligned}$$
(186)
$$\begin{aligned}{} & {} \sum \limits _{k=0}^{l_{max}} A_k\cos ((k+1)\nu )=\sum \limits _{k=1}^{l_{max}+1} A_{k-1}\cos (k\nu ) \end{aligned}$$
(187)
$$\begin{aligned}{} & {} \sum \limits _{k=0}^{l_{max}} B_k\sin ((k-1)\nu )=\sum \limits _{k=-1}^{l_{max}-1} B_{k+1}\sin (k\nu )=-B_0\sin (\nu )+\sum \limits _{k=1}^{l_{max}-1} B_{k+1} \sin (k\nu ) \nonumber \\\end{aligned}$$
(188)
$$\begin{aligned}{} & {} \sum \limits _{k=0}^{l_{max}} B_k\sin ((k+1)\nu )=\sum \limits _{k=1}^{l_{max}+1} B_{k-1}\sin (k\nu ) \end{aligned}$$
(189)

1.2.1 Application to cosine series

$$\begin{aligned}{} & {} \sum \limits _{m=0}^\infty A_m \cos (m\nu )\sum \limits _{n=0}^\infty B_n \cos (n\nu )\nonumber \\{} & {} \quad =\sum \limits _{m=0}^\infty \sum \limits _{n=0}^\infty A_m B_n \cos (m\nu ) \cos (n\nu )\nonumber \\{} & {} \quad =\sum \limits _{m=0}^\infty \sum \limits _{n=0}^\infty A_m B_n \frac{1}{2}\left[ \cos ((m-n)\nu )+ \cos ((m+n)\nu )\right] \nonumber \\{} & {} \quad =\frac{1}{2}\left[ A_{0}B_{0}+\sum \limits _{p=0}^{\infty } A_{p} B_p \right] \nonumber \\{} & {} \quad +\frac{1}{2}\sum \limits _{p=1}^{\infty } \left[ \sum \limits _{n=0}^\infty B_n A_{p+n} +\sum \limits _{n=p}^{\infty } B_n A_{-p+n} + \sum \limits _{n=0}^{p} B_n A_{p-n} \right] \cos (p\nu ) \end{aligned}$$
(190)

1.2.2 Application to sine times cosine series

$$\begin{aligned}{} & {} \sum \limits _{m=0}^\infty B_m \sin (m x) \sum \limits _{n=0}^\infty A_n \cos (n x)\nonumber \\{} & {} \quad =\sum \limits _{m=0}^\infty \sum \limits _{n=0}^\infty B_{m} A_n \sin (m x) \cos (n x)\nonumber \\{} & {} \quad =\sum \limits _{m=0}^\infty \sum \limits _{n=0}^\infty B_{m} A_n \frac{1}{2}\left[ \sin ((m-n) x)+\sin ((m+n) x)\right] \nonumber \\{} & {} \quad =\frac{1}{2}\sum \limits _{p=1}^\infty \left[ \sum _{n=0}^\infty A_n B_{p+n} -\sum \limits _{n=p}^\infty A_n B_{-p+n} +\sum \limits _{n=0}^p A_n B_{p-n} \right] \sin (p x) \end{aligned}$$
(191)

1.2.3 Application to cosine times sine series

$$\begin{aligned}{} & {} \sum \limits _{m=0}^\infty A_m \cos (m\nu )\sum \limits _{n=0}^\infty B_n \sin (n\nu )\nonumber \\{} & {} \quad =\sum \limits _{m=0}^\infty \sum \limits _{n=0}^\infty A_m B_n \cos (m\nu ) \sin (n\nu )\nonumber \\{} & {} \quad =\sum \limits _{m=0}^\infty \sum \limits _{n=0}^\infty A_m B_n \frac{1}{2}\left[ \sin ((m+n)\nu )-\sin ((m-n)\nu )\right] \nonumber \\{} & {} \quad =\frac{1}{2}\sum \limits _{p=1}^{\infty }\left[ -\sum \limits _{n=0}^\infty B_n A_{p+n} +\sum \limits _{n=p}^{\infty } B_n A_{-p+n} + \sum \limits _{n=0}^{p} B_n A_{p-n} \right] \sin (p\nu ) \end{aligned}$$
(192)

1.2.4 Application to sine series

$$\begin{aligned}{} & {} \sum \limits _{m=0}^\infty A_{m} \sin (m\nu )\sum \limits _{n=0}^\infty B_n \sin (n\nu )\nonumber \\{} & {} \quad =\sum \limits _{m=0}^\infty \sum \limits _{n=0}^\infty A_{m} B_n \sin (m\nu ) \sin (n\nu )\nonumber \\{} & {} \quad =\sum \limits _{m=0}^\infty \sum \limits _{n=0}^\infty A_{m} B_n \frac{1}{2}\left[ \cos ((m-n)\nu )- \cos ((m+n)\nu )\right] \nonumber \\{} & {} \quad =\frac{1}{2}\left[ - A_{0} B_0+\sum \limits _{p=0}^{\infty } A_{p} B_p \right] \nonumber \\{} & {} \quad +\frac{1}{2}\sum \limits _{p=1}^{\infty } \left[ \sum \limits _{n=0}^\infty B_n A_{p+n} +\sum \limits _{n=p}^{\infty } B_n A_{-p+n} - \sum \limits _{n=0}^{p} B_n A_{p-n} \right] \cos (p\nu ) \end{aligned}$$
(193)

1.3 Indefinite integrals

\(n \ne 0\)

$$\begin{aligned} \int \sin (n x)dx= & {} -\frac{1}{n} \cos (n x) +C \end{aligned}$$
(194)
$$\begin{aligned} \int \cos (n x)dx= & {} \frac{1}{n} \sin (n x) +C \end{aligned}$$
(195)
$$\begin{aligned} \int x \sin (n x) dx= & {} \frac{1}{n^2} \sin (n x) - \frac{x}{n}\cos (n x) + C \end{aligned}$$
(196)
$$\begin{aligned} \int x \cos (n x) dx= & {} \frac{1}{n^2} \cos (n x) + \frac{x}{n}\sin (n x) + C \end{aligned}$$
(197)
$$\begin{aligned} \int x^2 \cos (n x) dx= & {} \frac{x^2}{n}\sin (n x) -\frac{2}{n^3}\sin (n x) +\frac{2x}{n^2}\cos (nx) + C \end{aligned}$$
(198)

1.3.1 Cosine times cosine series

$$\begin{aligned}{} & {} \cos (\nu )\sum \limits _{n=0}^\infty A_n \cos (n\nu )=\sum \limits _{n=0}^\infty \frac{1}{2} A_n \left[ \cos ((1-n)\nu )+ \cos ((1+n)\nu )\right] \nonumber \\{} & {} \quad =\sum \limits _{n=0}^\infty \frac{1}{2} A_n \cos ((n-1)\nu )+\sum \limits _{n=0}^\infty \frac{1}{2} A_n \cos ((1+n)\nu ) \end{aligned}$$
(199)
$$\begin{aligned}{} & {} \int \cos (\nu )\sum \limits _{n=0}^\infty A_n \cos (n\nu ) d \nu \nonumber \\{} & {} \quad =C+\sum \limits _{n=0}^\infty \frac{1}{2} {\left\{ \begin{array}{ll} \frac{A_n}{n-1} \sin ((n-1)\nu ),\ \textrm{if} \ n\ne 1\\ A_1 \nu ,\ \textrm{if} \ n=1\\ \end{array}\right. } +\sum \limits _{n=0}^\infty \frac{1}{2} \frac{A_n}{n+1} \sin ((n+1)\nu )\nonumber \\{} & {} \quad = C + \frac{A_1}{2} \nu + \left[ A_0 +\frac{A_2}{2} \right] \sin (\nu )+\frac{1}{2}\sum \limits _{n=2}^\infty \frac{A_{n+1}+A_{n-1}}{n} \sin (n\nu ) \end{aligned}$$
(200)

1.3.2 Cosine times sine series

$$\begin{aligned}{} & {} \cos (\nu )\sum \limits _{n=0}^\infty B_n \sin (n\nu )=\sum \limits _{n=0}^\infty \frac{1}{2} B_n \left[ \sin ((1+n)\nu )-\sin ((1-n)\nu )\right] \nonumber \\{} & {} \quad =\sum \limits _{n=0}^\infty \frac{1}{2} B_n \sin ((1+n)\nu )+\sum \limits _{n=0}^\infty \frac{1}{2} B_n \sin ((n-1)\nu ) \end{aligned}$$
(201)
$$\begin{aligned}{} & {} \int \cos (\nu )\sum \limits _{n=0}^\infty B_n \sin (n\nu ) d\nu \nonumber \\{} & {} \quad =C-\sum \limits _{n=0}^\infty \frac{1}{2} \frac{B_n}{1+n} \cos ((1+n)\nu ) -\sum \limits _{n=0}^\infty \frac{1}{2} {\left\{ \begin{array}{ll} \frac{B_n}{n-1} \cos ((n-1)\nu ),\ \textrm{if} \ n\ne 1\\ 0 ,\ \textrm{if} \ n=1\\ \end{array}\right. }\nonumber \\{} & {} \quad = C -\frac{B_2}{2}\cos (\nu )-\frac{1}{2}\sum \limits _{n=2}^\infty \frac{B_{n-1}+B_{n+1}}{n} \cos (n\nu ) \end{aligned}$$
(202)

1.3.3 Sine times cosine series

$$\begin{aligned}{} & {} \sin (\nu )\sum \limits _{n=0}^\infty A_n \cos (n\nu )=\sum \limits _{n=0}^\infty \frac{1}{2} A_n \left[ \sin ((1-n)\nu )+\sin ((1+n)\nu )\right] \nonumber \\{} & {} \quad =-\sum \limits _{n=0}^\infty \frac{1}{2} A_n \sin ((n-1)\nu )+\sum \limits _{n=0}^\infty \frac{1}{2} A_n \sin ((1+n)\nu ) \end{aligned}$$
(203)
$$\begin{aligned}{} & {} \int \sin (\nu )\sum \limits _{n=0}^\infty A_n \cos (n\nu ) d \nu \nonumber \\{} & {} \quad =C+\sum \limits _{n=0}^\infty \frac{1}{2} {\left\{ \begin{array}{ll} \frac{A_n}{n-1} \cos ((n-1)\nu ),\ \textrm{if} \ n\ne 1\\ 0 ,\ \textrm{if} \ n=1\\ \end{array}\right. }-\sum \limits _{n=0}^\infty \frac{1}{2} \frac{A_n}{1+n} \cos ((1+n)\nu )\nonumber \\{} & {} \quad = C + \left[ -A_0 +\frac{A_2}{2} \right] \cos (\nu )+\frac{1}{2}\sum \limits _{n=2}^\infty \frac{A_{n+1}-A_{n-1}}{n}\cos (n\nu ) \end{aligned}$$
(204)

1.3.4 Sine times sine series

$$\begin{aligned}{} & {} \sin (\nu )\sum \limits _{n=0}^\infty B_n \sin (n\nu )=\sum \limits _{n=0}^\infty \frac{1}{2} B_n \left[ \cos ((1-n)\nu )- \cos ((1+n)\nu )\right] \nonumber \\{} & {} \quad =\sum \limits _{n=0}^\infty \frac{1}{2} B_n \cos ((n-1)\nu )-\sum \limits _{n=0}^\infty \frac{1}{2} B_n \cos ((1+n)\nu ) \end{aligned}$$
(205)
$$\begin{aligned}{} & {} \int \sin (\nu )\sum \limits _{n=0}^\infty B_n \sin (n\nu ) d \nu \nonumber \\{} & {} \quad =C+\sum \limits _{n=0}^\infty \frac{1}{2} {\left\{ \begin{array}{ll}\frac{B_n}{n-1} \sin ((n-1)\nu ),\ \textrm{if} \ n\ne 1\\ B_1 \nu ,\ \textrm{if} \ n=1\\ \end{array}\right. }-\sum \limits _{n=0}^\infty \frac{1}{2} \frac{B_n}{1+n} \sin ((1+n)\nu )\nonumber \\{} & {} \quad = C + \frac{B_1}{2} \nu + \frac{B_2}{2}\sin (\nu )+\frac{1}{2}\sum \limits _{n=2}^\infty \frac{B_{n+1}-B_{n-1}}{n}\sin (n\nu ) \end{aligned}$$
(206)

1.3.5 Product of cosine series

$$\begin{aligned}{} & {} \sum \limits _{m=0}^\infty A_m \cos (m\nu )\sum \limits _{n=0}^\infty B_n \cos (n\nu )\nonumber \\{} & {} \quad =\sum \limits _{m=0}^\infty \sum \limits _{n=0}^\infty A_m B_n \cos (m\nu ) \cos (n\nu ) \nonumber \\{} & {} \quad =\sum \limits _{m=0}^\infty \sum \limits _{n=0}^\infty A_m B_n \frac{1}{2}\left[ \cos ((m-n)\nu )+ \cos ((m+n)\nu )\right] \end{aligned}$$
(207)
$$\begin{aligned}{} & {} \int \sum \limits _{m=0}^\infty A_m \cos (m\nu ) \sum \limits _{n=0}^\infty B_n \cos (n\nu ) d \nu = C+\sum \limits _{m=0}^\infty \sum \limits _{n=0}^\infty A_{m} B_n\nonumber \\{} & {} \quad \times \frac{1}{2} \left[ {\left\{ \begin{array}{ll} \frac{\sin ((m-n)\nu )}{m-n},\ \textrm{if} \ m-n \ne 0\\ \nu ,\ \textrm{if} \ m-n=0\\ \end{array}\right. }+ {\left\{ \begin{array}{ll}\frac{\sin ((m+n)\nu )}{m+n},\ \textrm{if} \ m+n \ne 0\\ \nu ,\ \textrm{if} \ m+n=0\\ \end{array}\right. }\right] \nonumber \\{} & {} \quad =C+\frac{1}{2}\left[ A_{0}B_{0}+\sum \limits _{p=0}^{\infty } A_{p} B_p \right] \nu \nonumber \\{} & {} \quad +\frac{1}{2}\sum \limits _{p=1}^{\infty }\frac{1}{p} \left[ \sum \limits _{n=0}^\infty B_n A_{p+n} +\sum \limits _{n=p}^{\infty } B_n A_{-p+n} + \sum \limits _{n=0}^{p} B_n A_{p-n} \right] \sin (p\nu ) \end{aligned}$$
(208)

1.3.6 Product of cosine and sine series

$$\begin{aligned}{} & {} \sum \limits _{m=0}^\infty A_m \cos (m\nu )\sum \limits _{n=0}^\infty B_n \sin (n\nu )\nonumber \\{} & {} \quad =\sum \limits _{m=0}^\infty \sum \limits _{n=0}^\infty A_m B_n \cos (m\nu ) \sin (n\nu )\nonumber \\{} & {} \quad =\sum \limits _{m=0}^\infty \sum \limits _{n=0}^\infty A_m B_n \frac{1}{2}\left[ \sin ((m+n)\nu )-\sin ((m-n)\nu )\right] \end{aligned}$$
(209)
$$\begin{aligned}{} & {} \int \sum \limits _{m=0}^\infty A_m \cos (m\nu ) \sum \limits _{n=0}^\infty B_n \sin (n\nu ) d\nu =C+ \sum \limits _{m=0}^\infty \sum \limits _{n=0}^\infty A_m B_n \frac{1}{2}\times \nonumber \\{} & {} \quad \left[ {\left\{ \begin{array}{ll} \frac{\cos ((m-n)\nu )}{m-n},\ \textrm{if} \ m-n \ne 0\\ 0 ,\ \textrm{if} \ m-n=0\\ \end{array}\right. }- {\left\{ \begin{array}{ll}\frac{\cos ((m+n)\nu )}{m+n},\ \textrm{if} \ m+n \ne 0\\ 0 ,\ \textrm{if} \ m+n=0\\ \end{array}\right. }\right] \nonumber \\{} & {} \quad =C+\frac{1}{2}\sum \limits _{p=1}^{\infty }\frac{1}{p} \left[ \sum \limits _{n=0}^\infty B_n A_{p+n} -\sum \limits _{n=p}^{\infty } B_n A_{-p+n} - \sum \limits _{n=0}^{p} B_n A_{p-n} \right] \cos (p\nu ) \end{aligned}$$
(210)

1.3.7 Product of sine and cosine series

$$\begin{aligned}{} & {} \sum \limits _{m=0}^\infty B_{m} \sin (m\nu )\sum \limits _{n=0}^\infty A_n \cos (n\nu )\nonumber \\{} & {} \quad =\sum \limits _{m=0}^\infty \sum \limits _{n=0}^\infty B_{m} A_n \sin (m\nu ) \cos (n\nu )\nonumber \\{} & {} \quad =\sum \limits _{m=0}^\infty \sum \limits _{n=0}^\infty B_{m} A_n \frac{1}{2}\left[ \sin ((m-n)\nu )+\sin ((m+n)\nu )\right] \end{aligned}$$
(211)
$$\begin{aligned}{} & {} \int \sum \limits _{m=0}^\infty B_{m} \sin (m\nu )\ \sum \limits _{n=0}^\infty A_n \cos (n\nu ) d\nu =C+\sum \limits _{m=0}^\infty \sum \limits _{n=0}^\infty -B_{m} A_n \frac{1}{2} \times \nonumber \\{} & {} \quad \left[ {\left\{ \begin{array}{ll} \frac{\cos ((m-n)\nu )}{m-n},\ \textrm{if} \ m-n \ne 0\\ 0 ,\ \textrm{if} \ m-n=0\\ \end{array}\right. }+ {\left\{ \begin{array}{ll}\frac{\cos ((m+n)\nu )}{m+n},\ \textrm{if} \ m+n \ne 0\\ 0 ,\ \textrm{if} \ m+n=0\\ \end{array}\right. }\right] \nonumber \\{} & {} \quad =C+\frac{1}{2}\sum \limits _{p=1}^{\infty }\frac{1}{p} \left[ -\sum \limits _{n=0}^\infty A_n B_{p+n} +\sum \limits _{n=p}^{\infty } A_n B_{-p+n} - \sum \limits _{n=0}^{p} A_n B_{p-n} \right] \cos (p\nu )\qquad \quad \end{aligned}$$
(212)

1.3.8 Product of sine series

$$\begin{aligned}{} & {} \sum \limits _{m=0}^\infty A_{m} \sin (m\nu )\sum \limits _{n=0}^\infty B_n \sin (n\nu ) \nonumber \\{} & {} \quad =\sum \limits _{m=0}^\infty \sum \limits _{n=0}^\infty A_{m} B_n \sin (m\nu ) \sin (n\nu ) \nonumber \\{} & {} \quad =\sum \limits _{m=0}^\infty \sum \limits _{n=0}^\infty A_{m} B_n \frac{1}{2}\left[ \cos ((m-n)\nu )- \cos ((m+n)\nu )\right] \end{aligned}$$
(213)
$$\begin{aligned}{} & {} \int \sum \limits _{m=0}^\infty A_{m} \sin (m\nu ) \sum \limits _{n=0}^\infty B_n \sin (n\nu ) d \nu =C+\sum \limits _{m=0}^\infty \sum \limits _{n=0}^\infty A_{m} B_n \frac{1}{2}\times \nonumber \\{} & {} \quad \left[ {\left\{ \begin{array}{ll} \frac{\sin ((m-n)\nu )}{m-n},\ \textrm{if} \ m-n \ne 0\\ \nu ,\ \textrm{if} \ m-n=0\\ \end{array}\right. }- {\left\{ \begin{array}{ll}\frac{\sin ((m+n)\nu )}{m+n},\ \textrm{if} \ m+n \ne 0\\ \nu ,\ \textrm{if} \ m+n=0\\ \end{array}\right. }\right] \nonumber \\{} & {} \quad =C+\frac{1}{2}\left[ - A_{0} B_0+\sum \limits _{p=0}^{\infty } A_{p} B_p \right] \nu + \nonumber \\{} & {} \quad \frac{1}{2}\sum \limits _{p=1}^{\infty }\frac{1}{p} \left[ \sum \limits _{n=0}^\infty B_n A_{p+n} +\sum \limits _{n=p}^{\infty } B_n A_{-p+n} - \sum \limits _{n=0}^{p} B_n A_{p-n} \right] \sin (p\nu ) \end{aligned}$$
(214)

1.3.9 Indefinite integrals applied to useful fourier series

First the integral of a Fourier series:

$$\begin{aligned} \int \sum \limits _{n_x=0}^\infty f_{n_x} d \nu = A^\prime _0 \nu +\sum \limits _{n_x=1}^\infty \frac{A^\prime _{n_x} \sin (n_x \nu )}{n_x} -\frac{B^\prime _{n_x} \cos (n_x \nu )}{n_x} \end{aligned}$$
(215)

The integral of cosine of true anomaly times a Fourier series:

$$\begin{aligned}{} & {} \int \cos (\nu )\sum \limits _{n_x=0}^\infty f_{n_x} d\nu =\frac{A^\prime _1}{2} \nu -\frac{B^\prime _2}{2}\cos (\nu )+ \left[ A^\prime _0 +\frac{A^\prime _2}{2} \right] \sin (\nu ) \nonumber \\{} & {} \quad +\frac{1}{2}\sum \limits _{n=2}^\infty -\frac{B^\prime _{n-1}+B^\prime _{n+1}}{n} \cos (n\nu ) +\frac{1}{2}\sum \limits _{n=2}^\infty \frac{A^\prime _{n+1}+A^\prime _{n-1}}{n} \sin (n\nu ) \;. \end{aligned}$$
(216)

The integral of sine of true anomaly times a Fourier series:

$$\begin{aligned} \int \sin (\nu )\sum \limits _{n_x=0}^\infty f_{n_x} d\nu =\frac{B^\prime _1}{2} \nu + \left[ -A^\prime _0 +\frac{A^\prime _2}{2} \right] \cos (\nu )+ \frac{B^\prime _2}{2}\sin (\nu )\nonumber \\ +\frac{1}{2}\sum \limits _{n=2}^\infty \frac{A^\prime _{n+1}-A^\prime _{n-1}}{n}\cos (n\nu )+\frac{1}{2}\sum \limits _{n=2}^\infty \frac{B^\prime _{n+1}-B^\prime _{n-1}}{n}\sin (n\nu ) \;. \end{aligned}$$
(217)

The integral of \(1/(1+e\cos (\nu ))\) times a Fourier series:

$$\begin{aligned}{} & {} \int \sum \limits _{m=0}^\infty \beta _{m} \sum \limits _{n_x=0}^\infty f_{n_x} d\nu =\frac{1}{2}\left[ b^1_{0}A^\prime _{0}+\sum \limits _{p=0}^{\infty } b^1_{p} A^\prime _p \right] \nu \nonumber \\{} & {} \quad +\frac{1}{2}\sum \limits _{p=1}^{\infty }\frac{1}{p} \left[ \sum \limits _{n=0}^\infty A^\prime _n b^1_{p+n} +\sum \limits _{n=p}^{\infty } A^\prime _n b^1_{-p+n} + \sum \limits _{n=0}^{p} A^\prime _n b^1_{p-n} \right] \sin (p\nu ) \nonumber \\{} & {} \quad +\frac{1}{2}\sum \limits _{p=1}^{\infty }\frac{1}{p} \left[ \sum \limits _{n=0}^\infty B^\prime _n b^1_{p+n} -\sum \limits _{n=p}^{\infty } B^\prime _n b^1_{-p+n} - \sum \limits _{n=0}^{p} B^\prime _n b^1_{p-n} \right] \cos (p\nu ) \;. \end{aligned}$$
(218)

The integral of \(\cos (\nu )/(1+e\cos (\nu ))\) times a Fourier series:

$$\begin{aligned}{} & {} \int \sum \limits _{m=0}^\infty \beta _{c,m} \sum \limits _{n_x=0}^\infty f_{n_x} d\nu =\frac{1}{2}\left[ B^1_{c,0}A^\prime _{0}+\sum \limits _{p=0}^{\infty } B^1_{c,p} A^\prime _p \right] \nu \nonumber \\{} & {} \quad +\frac{1}{2}\sum \limits _{p=1}^{\infty }\frac{1}{p} \left[ \sum \limits _{n=0}^\infty B^\prime _n B^1_{c,p+n} -\sum \limits _{n=p}^{\infty } B^\prime _n B^1_{c,-p+n} - \sum \limits _{n=0}^{p} B^\prime _n B^1_{c,p-n} \right] \cos (p\nu ) \nonumber \\{} & {} \quad +\frac{1}{2}\sum \limits _{p=1}^{\infty }\frac{1}{p} \left[ \sum \limits _{n=0}^\infty A^\prime _n B^1_{c,p+n} +\sum \limits _{n=p}^{\infty } A^\prime _n B^1_{c,-p+n} + \sum \limits _{n=0}^{p} A^\prime _n B^1_{c,p-n} \right] \sin (p\nu ) \;. \end{aligned}$$
(219)

The integral of \(\sin (\nu )/(1+e\cos (\nu ))\) times a Fourier series:

$$\begin{aligned}{} & {} \int \sum \limits _{m=0}^\infty \beta _{s,m} \sum \limits _{n_x=0}^\infty f_{n_x} d\nu =\frac{1}{2}\left[ - B^1_{s,0} B^\prime _0+\sum \limits _{p=0}^{\infty } B^1_{s,p} B^\prime _p \right] \nu \nonumber \\{} & {} \quad +\frac{1}{2}\sum \limits _{p=1}^{\infty }\frac{1}{p} \left[ -\sum \limits _{n=0}^\infty A^\prime _n B^1_{s,p+n} +\sum \limits _{n=p}^{\infty } A^\prime _n B^1_{s,-p+n} - \sum \limits _{n=0}^{p} A^\prime _n B^1_{s,p-n} \right] \cos (p\nu ) \nonumber \\{} & {} \quad +\frac{1}{2}\sum \limits _{p=1}^{\infty }\frac{1}{p} \left[ \sum \limits _{n=0}^\infty B^\prime _n B^1_{s,p+n} +\sum \limits _{n=p}^{\infty } B^\prime _n B^1_{s,-p+n} - \sum \limits _{n=0}^{p} B^\prime _n B^1_{s,p-n} \right] \sin (p\nu ) \;. \end{aligned}$$
(220)

1.4 Definite integrals

\(n \ne 0\)

$$\begin{aligned}{} & {} \int \limits _0^{2\pi }\sin (n x)dx= 0 \end{aligned}$$
(221)
$$\begin{aligned}{} & {} \int \limits _0^{2\pi }\cos (n x)dx= 0 \end{aligned}$$
(222)
$$\begin{aligned}{} & {} \int \limits _0^{2\pi } x \sin (n x) dx= - \frac{2\pi }{n} \end{aligned}$$
(223)
$$\begin{aligned}{} & {} \int \limits _0^{2\pi } x \cos (n x) dx= 0 \end{aligned}$$
(224)
$$\begin{aligned}{} & {} \int \limits _0^{2\pi } x^2 \cos (n x) dx= \frac{4\pi }{n^2} \end{aligned}$$
(225)
$$\begin{aligned}{} & {} \int \limits _0^{2\pi } \cos (n x) \cos (m x) dx={\left\{ \begin{array}{ll} 0, \; n \ne m \\ \pi , \; n = m \end{array}\right. } \end{aligned}$$
(226)
$$\begin{aligned}{} & {} \int \limits _0^{2\pi } \sin (n x) \sin (m x) dx={\left\{ \begin{array}{ll} 0, \; n \ne m \\ \pi , \; n = m \end{array}\right. } \end{aligned}$$
(227)
$$\begin{aligned}{} & {} \int \limits _0^{2\pi } \sin (n x) \cos (m x) dx=0 \end{aligned}$$
(228)

1.5 Fourier series expansions of powers of the conic equation

Recursion relations for Fourier series expansions of powers of the conic equation from Scheeres (1992) and Scheeres (2012):

$$\begin{aligned}{} & {} \left( \frac{1}{1+e\cos \nu } \right) ^n=\sum \limits _{m=0}^\infty b_m^n\cos (m\nu ) \end{aligned}$$
(229)
$$\begin{aligned}{} & {} b_0^n=\frac{\sqrt{1-e^2}}{\left( 1-e^2 \right) ^n} f_0^n \end{aligned}$$
(230)
$$\begin{aligned}{} & {} b_k^n=(-1)^k 2 \left( \frac{e}{2}\right) ^k \frac{\sqrt{1-e^2}}{\left( 1-e^2 \right) ^n} f_k^n \end{aligned}$$
(231)
$$\begin{aligned}{} & {} f_k^{n+1}={\left\{ \begin{array}{ll} \frac{(n-k)!(n+k)!}{(n!)^2}\sum \limits _{l=0}^{[(n-k)/2]} \frac{n!}{l!(l+k)!(n-k-2l)!} \left( \frac{e}{2} \right) ^{2l} &{} n+1>k\\ \frac{n-k}{n} \left( 1-e^2\right) f_k^n+2f_{k-1}^{n+1} &{} n+1 \le k \end{array}\right. } \end{aligned}$$
(232)
$$\begin{aligned}{} & {} f^1_k=\left( \frac{2}{1+\sqrt{1-e^2}} \right) ^k \end{aligned}$$
(233)

where the notation [x] means to round down to the nearest integer.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moretto, M., McMahon, J. Orbit averaging applied to inverse-square perturbations. Celest Mech Dyn Astron 135, 1 (2023). https://doi.org/10.1007/s10569-022-10114-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-022-10114-3

Keywords

Navigation