Skip to main content
Log in

Tidal evolution for any rheological model using a vectorial approach expressed in Hansen coefficients

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We revisit the two-body problem, where one body can be deformed under the action of tides raised by the companion. Tidal deformation and consequent dissipation result in spin and orbital evolution of the system. In general, the equations of motion are derived from the tidal potential developed in Fourier series expressed in terms of Keplerian elliptical elements, so that the variation of dissipation with amplitude and frequency can be examined. However, this method introduces multiple index summations and some orbital elements depend on the chosen frame, which is prone to confusion and errors. Here, we develop the quadrupole tidal potential solely in a series of Hansen coefficients, which are widely used in celestial mechanics and depend just on the eccentricity. We derive the secular equations of motion in a vectorial formalism, which is frame independent and valid for any rheological model. We provide expressions for a single average over the mean anomaly and for an additional average over the argument of the pericentre. These equations are suitable to model the long-term evolution of a large variety of systems and configurations, from planet–satellite to stellar binaries. We also compute the tidal energy released inside the body for an arbitrary configuration of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Note that the \(b(\sigma )\) functions have a slightly different definition. In Boué et al. (2016), it is defined as the imaginary part of \({{\hat{k}}}_2 (\sigma )\), while in our case it is defined as the opposite of it (Eq. (54)).

References

Download references

Acknowledgements

We thank G. Boué for discussions. We are grateful to two anonymous referees for their insightful comments. This work was supported by CFisUC (UIDB/04564/2020 and UIDP/04564/2020), GRAVITY (PTDC/FIS-AST/7002/2020), PHOBOS (POCI-01-0145-FEDER-029932) and ENGAGE SKA (POCI-01-0145-FEDER-022217), funded by COMPETE 2020 and FCT, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre C. M. Correia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Hansen coefficients relations

From the definition of the Hansen coefficients (Eq. (48)), a number of recurrence relations can be obtained. In this work, we use the following ones (e.g. Challe and Laclaverie 1969; Giacaglia 1976):

$$\begin{aligned} X_k^{\ell ,-m}= & {} X_{-k}^{\ell ,m} , \end{aligned}$$
(154)
$$\begin{aligned} (1-e^2) \, X_k^{\ell ,m}= & {} X_k^{\ell +1,m} + \frac{e}{2} \left[ X_k^{\ell +1,m-1} + X_k^{\ell +1,m+1} \right] , \end{aligned}$$
(155)
$$\begin{aligned} \sqrt{1-e^2}\, k \, X_k^{\ell ,m}= & {} m (1-e^2) X_k^{\ell -2,m} + \frac{e \, \ell }{2 } \left[ X_k^{\ell -1,m-1} - X_k^{\ell -1,m+1} \right] \nonumber \\= & {} m \, X_k^{\ell -1,m} + \frac{e}{2} \left[ (m+\ell ) \, X_k^{\ell -1,m-1} + (m-\ell ) \, X_k^{\ell -1,m+1} \right] . \end{aligned}$$
(156)

The first relation (Eq. (154)) allows us to obtain the coefficients \(X_k^{-3,-1}\) and \(X_k^{-3,-2}\) from the coefficients \(X_k^{-3,1}\) and \(X_k^{-3,2}\), respectively (Table 1). It also allows us to obtain any other coefficient with \(m<0\) from \(X_k^{\ell ,m}\) with \(m>0\). The second relation (Eq. (155)) with \(\ell = -4\) provides

$$\begin{aligned} \begin{aligned} m=0 \quad \Rightarrow \quad (1-e^2) \, X_k^{-4,0}&= \frac{e}{2} \, X_k^{-3,-1} + X_k^{-3,0} + \frac{e}{2} \, X_k^{-3,1} , \\ m=1 \quad \Rightarrow \quad (1-e^2) \, X_k^{-4,1}&= \frac{e}{2} \, X_k^{-3,0} + X_k^{-3,1} + \frac{e}{2} \, X_k^{-3,2} , \\ m=2 \quad \Rightarrow \quad (1-e^2) \, X_k^{-4,2}&= \frac{e}{2} \, X_k^{-3,1} + X_k^{-3,2} + \frac{e}{2} \, X_k^{-3,3} . \end{aligned} \end{aligned}$$
(157)

Finally, from the last relation (Eq. (156)) with \(\ell = -3\) we get

$$\begin{aligned} \begin{aligned} m=0 \quad \Rightarrow \quad \sqrt{1-e^2} \, k \, X_k^{-3,0}&= \frac{3}{2} e \, ( X_k^{-4,1} - \, X_k^{-4,-1}) , \\ m=1 \quad \Rightarrow \quad \sqrt{1-e^2} \, k \, X_k^{-3,1}&= 2 e \, X_k^{-4,2} + X_k^{-4,1} - e \, X_k^{-4,0} , \\ m=2 \quad \Rightarrow \quad \sqrt{1-e^2} \, k \, X_k^{-3,2}&= \frac{5}{2} e \, X_k^{-4,3} + 2 \, X_k^{-4,2} - \frac{1}{2} e \, X_k^{-4,1} . \end{aligned} \end{aligned}$$
(158)

Using these sets of relations, it is possible to express all Hansen coefficients appearing in this work solely as functions of \(X_k^{-3,0}\), \(X_k^{-3,1}\), and \(X_k^{-3,2}\), using the following sequence:

$$\begin{aligned} \begin{aligned} X_k^{-4,3}&= \frac{1}{5e}\bigg [ e \, X_k^{-4,1} - 4 \, X_k^{-4,2} + 2 \sqrt{1-e^2} \, k \, X_k^{-3,2} \bigg ] , \\ X_k^{-3,3}&= \frac{1}{e} \bigg [ 2 (1-e^2) \, X_k^{-4,2} - 2 X_k^{-3,2} - e \, X_k^{-3,1} \bigg ] , \\ X_k^{-4,2}&= \frac{1}{2e} \bigg [ e \, X_k^{-4,0} - X_k^{-4,1} + \sqrt{1-e^2} \, k \, X_k^{-3,1} \bigg ] , \\ X_k^{-4,1}&= \frac{1}{1-e^2}\bigg [ \frac{e}{2} \, X_k^{-3,2} +X_k^{-3,1}+\frac{e}{2} \, X_k^{-3,0} \bigg ] , \\ X_k^{-4,0}&= \frac{1}{1-e^2} \bigg [ \frac{e}{2} \, X_k^{-3,-1} +X_k^{-3,0} +\frac{e}{2} \, X_k^{-3,1} \bigg ] . \end{aligned} \end{aligned}$$
(159)

Hansen coefficients combinations

We let

$$\begin{aligned} F_{+}= \left( \frac{r}{a} \right) ^\ell \mathrm {e}^{\mathrm {i}m \upsilon } , \quad \mathrm {and} \quad F_{-}= \left( \frac{r}{a} \right) ^\ell \mathrm {e}^{- \mathrm {i}n \upsilon } , \end{aligned}$$
(160)

with derivatives, respectively,

$$\begin{aligned} F_{+}'= & {} - \mathrm {i}\frac{d F_{+}}{d M} = m \sqrt{1-e^2}\left( \frac{r}{a} \right) ^{\ell -2} \mathrm {e}^{\mathrm {i}m v} - e \, \ell \left( \frac{r}{a} \right) ^{\ell -1} \frac{\mathrm {e}^{\mathrm {i}(m+1) \upsilon } - \mathrm {e}^{\mathrm {i}(m-1) \upsilon }}{2 \sqrt{1-e^2}} , \end{aligned}$$
(161)
$$\begin{aligned} F_{-}'= & {} \mathrm {i}\frac{d F_{-}}{d M} = n \sqrt{1-e^2}\left( \frac{r}{a} \right) ^{\ell -2} \mathrm {e}^{- \mathrm {i}n \upsilon } - e \, \ell \left( \frac{r}{a} \right) ^{\ell -1} \frac{\mathrm {e}^{-\mathrm {i}(n+1) \upsilon } - \mathrm {e}^{-\mathrm {i}(n-1) \upsilon }}{2 \sqrt{1-e^2}} . \end{aligned}$$
(162)

Using the definition of the Hansen coefficients (Eq. (48)), we have

$$\begin{aligned} \left\langle F_{+}F_{-}\right\rangle _M= & {} \sum _{k=-\infty }^{+\infty }X_k^{\ell ,m} X_k^{\ell ,n} = \left\langle \left( \frac{r}{a} \right) ^{2\ell } \mathrm {e}^{\mathrm {i}(m-n) \upsilon } \right\rangle _M = X_0^{2\ell ,m-n} , \end{aligned}$$
(163)
$$\begin{aligned} \left\langle F_{+}' F_{-}\right\rangle _M= & {} \sum _{k=-\infty }^{+\infty }k \, X_k^{\ell ,m} X_k^{\ell ,n} \nonumber \\= & {} \left\langle m \sqrt{1-e^2}\left( \frac{r}{a} \right) ^{2\ell -2} \mathrm {e}^{\mathrm {i}(m-n) \upsilon } - \frac{e \, \ell }{2 \sqrt{1-e^2}}\right. \nonumber \\&\left. \times \left( \frac{r}{a} \right) ^{2\ell -1} \left( \mathrm {e}^{\mathrm {i}(m-n+1) \upsilon } - \mathrm {e}^{\mathrm {i}(m-n-1) \upsilon } \right) \right\rangle _M \nonumber \\= & {} m \sqrt{1-e^2}X_0^{2\ell -2,m-n} - \frac{e \, \ell }{2 \sqrt{1-e^2}} \left( X_0^{2\ell -1,m-n+1} - X_0^{2\ell -1,m-n-1} \right) \nonumber \\= & {} \frac{m+n}{2} \sqrt{1-e^2}X_0^{2\ell -2,m-n} , \end{aligned}$$
(164)
$$\begin{aligned} \left\langle F_{+}' F_{-}' \right\rangle _M= & {} \sum _{k=-\infty }^{+\infty }k^2 \, X_k^{\ell ,m} X_k^{\ell ,n} \nonumber \\= & {} \left\langle \frac{\ell ^2 \, e^2}{4 (1-e^2)} \left( \frac{r}{a} \right) ^{2\ell -2} \left( 2 \mathrm {e}^{\mathrm {i}(m-n) \upsilon } - \mathrm {e}^{\mathrm {i}(m-n+2) \upsilon } - \mathrm {e}^{\mathrm {i}(m-n-2) \upsilon } \right) \right\rangle _M \nonumber \\&+ \left\langle (m-n) \, \ell \, \frac{e}{2} \left( \frac{r}{a} \right) ^{2\ell -3} \left( \mathrm {e}^{\mathrm {i}(m-n+1) \upsilon } - \mathrm {e}^{\mathrm {i}(m-n-1) \upsilon } \right) \nonumber \right. \\&\left. + m n \, (1-e^2) \left( \frac{r}{a} \right) ^{2\ell -4} \mathrm {e}^{\mathrm {i}(m-n) \upsilon } \right\rangle _M \nonumber \\= & {} \frac{\ell ^2 \, e^2}{4 (1-e^2)} \left( 2 X_0^{2l-2,m-n} - X_0^{2l-2,m-n+2} - X_0^{2l-2,m-n-2} \right) \nonumber \\&+ (m-n) \, \ell \, \frac{e}{2} \left( X_0^{2l-3,m-n+1} - X_0^{2l-3,m-n-1} \right) + m n \, (1-e^2) X_0^{2l-4,m-n} \nonumber \\= & {} \ell ^2 \left( 2 X_0^{2l-3,m-n} - X_0^{2l-2,m-n} \right) \nonumber \\&+ \left( \frac{\ell (m-n)^2}{2\ell -2} + m n - \ell ^2 \right) (1-e^2) X_0^{2l-4,m-n} ,\nonumber \\ \end{aligned}$$
(165)

where to simplify expression (164) we used equation (156), and to simplify expression (165) we used equations (155) and (156) together with (e.g. Giacaglia 1976):

$$\begin{aligned} (1-e^2)^2 X_k^{\ell ,m}= & {} \left( 1+\frac{e^2}{2}\right) X_k^{\ell +2,m} + e \left[ X_k^{\ell +2,m+1} + X_k^{\ell +2,m-1} \right] \nonumber \\&\quad + \frac{e^2}{4} \left[ X_k^{\ell +2,m+2} + X_k^{\ell +2,m-2} \right] . \end{aligned}$$
(166)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correia, A.C.M., Valente, E.F.S. Tidal evolution for any rheological model using a vectorial approach expressed in Hansen coefficients. Celest Mech Dyn Astron 134, 24 (2022). https://doi.org/10.1007/s10569-022-10079-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-022-10079-3

Keywords

Navigation