Skip to main content
Log in

An analytical model for tidal evolution in co-orbital systems. I. Application to exoplanets

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Close-in co-orbital planets (in a 1:1 mean-motion resonance) can experience strong tidal interactions with the central star. Here, we develop an analytical model adapted to the study of the tidal evolution of those systems. We use a Hamiltonian version of the constant time-lag tidal model, which extends the Hamiltonian formalism developed for the point-mass case. We show that co-orbital systems undergoing tidal dissipation favour either the Lagrange or the anti-Lagrange configurations, depending on the system parameters. However, for all range of parameters and initial conditions, both configurations become unstable, although the timescale for the destruction of the system can be larger than the lifetime of the star. We provide an easy-to-use criterion to determine whether an already known close-in exoplanet may have an undetected co-orbital companion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Niederman et al. (2020) give an expression of the coefficients of this matrix in terms of integrals depending on some parameters.

  2. The remaining degree of freedom is due to the conservation of the total angular momentum of the system.

  3. Four, with \(\displaystyle {g_2}\).

  4. Old means that its age is significant with respect to its expectancy of life.

  5. (qoppa) and [sampi, see Eq. (59)] are archaic Greek letters.

  6. Normalized by \(\displaystyle {m\bar{a}^2\eta }\).

References

  • Adams, F.C., Bloch, A.M.: On the stability of extrasolar planetary systems and other closely orbiting pairs. Mon. Not. R. Astron. Soc. 446, 3676–3686 (2015)

    Article  ADS  Google Scholar 

  • Beaugé, C., Sándor, Z., Érdi, B., Süli, Á.: Co-orbital terrestrial planets in exoplanetary systems: a formation scenario. Astron. Astrophys. 463, 359–367 (2007)

    Article  ADS  Google Scholar 

  • Claret, A., Cunha, N.C.S.: Circularization and synchronization times in Main-Sequence of detached eclipsing binaries II. Using the formalisms by Zahn. Astron. Astrophys. 318, 187–197 (1997)

    ADS  Google Scholar 

  • Correia, A.C.M., Laskar, J.: Mercury’s capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics. Nature 429, 848–850 (2004)

    Article  ADS  Google Scholar 

  • Correia, A.C.M., Laskar, J.: Tidal Evolution of Exoplanets, pp. 239–266. University of Arizona Press, Tucson (2010)

    Google Scholar 

  • Correia, A.C.M., Boué, G., Laskar, J., Rodríguez, A.: Deformation and tidal evolution of close-in planets and satellites using a Maxwell viscoelastic rheology. Astron. Astrophys. 571, A50 (2014)

    Article  ADS  Google Scholar 

  • Correia, A.C.M., Bourrier, V., Delisle, J.B.: Why do warm Neptunes present nonzero eccentricity? Astron. Astrophys. 635, A37 (2020)

    Article  ADS  Google Scholar 

  • Cresswell, P., Nelson, R.P.: Three-dimensional simulations of multiple protoplanets embedded in a protostellar disc. Astron. Astrophys. 482, 677–690 (2008)

    Article  ADS  Google Scholar 

  • Danby, J.M.A.: Stability of the triangular points in the elliptic restricted problem of three bodies. Astron. Astrophys. 69, 165 (1964)

    MathSciNet  Google Scholar 

  • Darwin, G.H.: On the secular change in the elements of a satellite revolving around a tidally distorted planet. Philos. Trans. R. Soc. Lond. 171, 713–891 (1880)

    ADS  Google Scholar 

  • Efroimsky, M.: Bodily tides near spin-orbit resonances. Celest. Mech. Dyn. Astron. 112, 283–330 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Euler, L.: Considerationes de motu corporum coelestium. Novi commentarii academiae scientiarum Petropolitanae. Berlin Acad. 10, 544–558 (1764)

  • Ford, E.B., Gaudi, B.S.: Observational constraints on Trojans of transiting extrasolar planets. Astron. Astrophys. 652, L137–L140 (2006)

    Google Scholar 

  • Ford, E.B., Holman, M.J.: Using transit timing observations to search for Trojans of transiting extrasolar planets. Astron. Astrophys. 664(1), L51–L54 (2007)

    Google Scholar 

  • Gascheau, G.: Examen d’une classe d’équations différentielles et application à un cas particulier du problème des trois corps. C. R. Acad. Sci. Paris 16(7), 393–394 (1843)

    Google Scholar 

  • Giuppone, C.A., Beaugé, C., Michtchenko, T.A., Ferraz-Mello, S.: Dynamics of two planets in co-orbital motion. Month. Not. R. Astron. Soc. 407, 390–398 (2010)

    Article  ADS  Google Scholar 

  • Giuppone, C.A., Benitez-Llambay, P., Beaugé, C.: Origin and detectability of co-orbital planets from radial velocity data. MNRAS 421(1), 356–368 (2012)

    ADS  Google Scholar 

  • Hara, N.C., Bouchy, F., Stalport, M., Boisse, I., Rodrigues, J., Delisle, J.-B., et al.: The SOPHIE search for northern extrasolar planets. XVI. HD 158259: a compact planetary system in a near-3:2 mean motion resonance chain. Astron. Astrophys. 636, L6 (2020)

    Article  ADS  Google Scholar 

  • Hippke, M., Angerhausen, D.: A statistical search for a population of exo-Trojans in the Kepler data set. ApJ 811, 1 (2015)

    Article  ADS  Google Scholar 

  • Hut, P.: Stability of tidal equilibrium. Astron. Astrophys. 92, 167–170 (1980)

    ADS  MathSciNet  MATH  Google Scholar 

  • Janson, M.: A systematic search for Trojan planets in the Kepler data. APJ 774, 156 (2013)

    Article  ADS  Google Scholar 

  • Kaula, W.M.: Tidal dissipation by solid friction and the resulting orbital evolution. Rev. Geophys. 2, 661–685 (1964)

    Article  ADS  Google Scholar 

  • Lagrange: Œuvres complètes. Gauthier-Villars, Paris (1772) (1869)

  • Lainey, V.: Quantification of tidal parameters from Solar System data. Celest. Mech. Dyn. Astron. 126, 145–156 (2016)

    Article  ADS  Google Scholar 

  • Laskar, J., Robutel, P.: Stability of the planetary three-body problem. I. Expansion of the planetary Hamiltonian. Celest. Mech. Dyn. Astron. 62, 193–217 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Laskar, J., Boué, G., Correia, A.C.M.: Tidal dissipation in multi-planet systems and constraints on orbit fitting. Astron. Astrophys. 538, A105 (2012)

    Article  ADS  MATH  Google Scholar 

  • Laughlin, G., Chambers, J.E.: Extrasolar Trojans: the viability and detectability of planets in the 1:1 resonance. Astron. J. 124, 592–600 (2002)

    Article  ADS  Google Scholar 

  • Leleu, A., Robutel, P., Correia, A.C.M.: Detectability of quasi-circular co-orbital planets. Application to the radial velocity technique. Astron. Astrophys. 581, A128 (2015)

    Article  ADS  Google Scholar 

  • Leleu, A., Robutel, P., Correia, A.C.M., Lillo-Box, J.: Detection of co-orbital planets by combining transit and radial-velocity measurements. Astron. Astrophys. 599, L7 (2017)

    Article  ADS  Google Scholar 

  • Leleu, A., Robutel, P., Correia, A.C.M.: On the coplanar eccentric non-restricted co-orbital dynamics. Celest. Mech. Dyn. Astron. 130, 24 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Leleu, A., Coleman, G.A.L., Ataiee, S.: Stability of the co-orbital resonance under dissipation. Application to its evolution in protoplanetary discs. Astron. Astrophys. 631, A6 (2019)

    Article  ADS  Google Scholar 

  • Lillo-Box, J., Barrado, D., Figueira, P., et al.: The TROY project: searching for co-orbital bodies to known planets. I. Project goals and first results from archival radial velocity. Astron. Astrophys. 609, A96 (2018a)

  • Lillo-Box, J., Leleu, A., Parviainen, H., et al.: The TROY project. II. Multi-technique constraints on exotrojans in nine planetary systems. Astron. Astrophys. 618, A42 (2018b)

  • Luhn, J.K., Bastien, F.A., Wright, J.T., Johnson, J.A., Howard, A.W., Isaacson, H.: Retired A stars and their companions. VIII. 15 New planetary signals around subgiants and transit parameters for California planet search planets with subgiant hosts. Astron. J. 157, 149 (2019)

    Article  ADS  Google Scholar 

  • Lyra, W., Johansen, A., Klahr, H., Piskunov, N.: Standing on the shoulders of giants. Trojan Earths and vortex trapping in low mass self-gravitating protoplanetary disks of gas and solids. Astron. Astrophys. 493, 1125–1139 (2009)

    Article  ADS  Google Scholar 

  • Madhusudhan, N., Winn, J.N.: Empirical constraints on Trojan companions and orbital eccentricities in 25 transiting exoplanetary systems. APJ 693(1), 784–793 (2009)

    Article  ADS  Google Scholar 

  • Mignard, F.: The evolution of the lunar orbit revisited. I. Moon Planets 20, 301–315 (1979)

    Article  ADS  MATH  Google Scholar 

  • Moeckel, R.: Minimal energy configurations of gravitationally interacting rigid bodies. Celest. Mech. Dyn. Astron. 128, 3–18 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Munk, W.H., MacDonald, G.J.F.: The Rotation of the Earth; A Geophysical Discussion. Cambridge University Press, Cambridge (1960)

    MATH  Google Scholar 

  • Namouni, F.: Secular interactions of coorbiting objects. Icarus 137, 293–314 (1999)

    Article  ADS  Google Scholar 

  • Nauenberg, M.: Stability and eccentricity for two planets in a 1:1 resonance, and their possible occurrence in extrasolar planetary systems. Astron. J. 124, 2332–2338 (2002)

    Article  ADS  Google Scholar 

  • Niederman, L., Pousse, A., Robutel, P.: On the co-orbital motion in the three-body problem: existence of quasi-periodic horseshoe-shaped orbits. Commun. Math. Phys. 377, 551–612 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Pierens, A., Raymond, S.N.: Disruption of co-orbital (1:1) planetary resonances during gas-driven orbital migration. MNRAS 442, 2296–2303 (2014)

    Article  ADS  Google Scholar 

  • Pousse, A., Robutel, P., Vienne, A.: On the co-orbital motion in the planar restricted three-body problem: the quasi-satellite motion revisited. Celest. Mech. Dyn. Astron. 128, 383–407 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Roberts, G.: Linear stability of the elliptic Lagrangian triangle solutions in the three-body problem. J. Dyn. Differ. Equ. 182, 191–218 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Robutel, P., Pousse, A.: On the co-orbital motion of two planets in quasi-circular orbits. Celest. Mech. Dyn. Astron. 117, 17–40 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Robutel, P., Niederman, L., Pousse, A.: Rigorous treatment of the averaging process for co-orbital motions in the planetary problem. Comput. Appl. Math. 35(3), 951–985 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Rodríguez, A., Giuppone, C.A., Michtchenko, T.A.: Tidal evolution of close-in exoplanets in co-orbital configurations. Celest. Mech. Dyn. Astron. 117, 59–74 (2013)

    Article  ADS  Google Scholar 

  • Singer, S.F.: The origin of the Moon and geophysical consequences*. Geophys. J. R. Astron. Soc. 15(1–2), 205–226 (1968)

    Google Scholar 

  • Vokrouhlický, D., Nesvorný, D.: Transit timing variations for planets co-orbiting in the horseshoe regime. APJ 791, 6 (2014)

    Article  ADS  Google Scholar 

  • Yoder, C.F.: Astrometric and geodetic properties of Earth and the solar system. In: Global Earth Physics: A Handbook of Physical Constants, pp. 1–31. American Geophysical Union (1995)

Download references

Acknowledgements

This work was supported by CFisUC (UIDB/04564/2020 and UIDP/04564/2020), GRAVITY (PTDC/FIS-AST/7002/2020), PHOBOS (POCI-01-0145-FEDER-029932), and ENGAGE SKA (POCI-01-0145-FEDER-022217), funded by COMPETE 2020 and FCT, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémy Couturier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection on Exoplanet Dynamics.

Editors: Alessandro Morbidelli, Kleomenis Tsiganis and Alessandra Celletti.

Appendices

Appendices

Notations

We gather here for convenience the notations used throughout this work.Footnote 5

Table 4 Notations

Coefficients of the Hamiltonian \(\displaystyle {\mathcal {H}_4}\) and \(\displaystyle {\mathcal {H}_t^j}\)

First, we give the coefficients depending on \(\displaystyle {\xi }\) of the Hamiltonian \(\displaystyle {\mathcal {H}_4}\). We recall that \(\displaystyle {\mathcal {H}_4}\) is expressed

$$\begin{aligned} \begin{aligned} \mathcal {H}_4&=\frac{1}{4}\frac{m}{m_0}\left\{ {\,}D_h\left( X_1^2\bar{X}_1^2+X_2^2\bar{X}_2^2\right) +E_hX_1^2\bar{X}_2^2+\bar{E}_hX_2^2\bar{X}_1^2\right. \\&\quad \left. +\,F_h\left( X_1X_2\bar{X}_1^2+\bar{X}_1\bar{X}_2X_2^2\right) +\bar{F}_h\left( \bar{X}_1\bar{X}_2X_1^2+X_1X_2\bar{X}_2^2\right) +G_hX_1X_2\bar{X}_1\bar{X}_2{\,}\right\} . \end{aligned}\nonumber \\ \end{aligned}$$
(71)

The coefficients read \(\displaystyle {\left( \text {recall that }\varDelta =\sqrt{2-2\cos \xi }\right) }\)

$$\begin{aligned} \begin{aligned} D_h&=\frac{7}{16}\cos \xi +\frac{1}{4\varDelta ^9}\left( -\frac{3951}{32}+115\cos \xi +\frac{293}{8}\cos 2\xi -27\cos 3\xi -\frac{37}{32}\cos 4\xi \right) , \\ G_h&=\cos \xi +\varDelta ^{-9}\left( -\frac{4491}{32}+139\cos \xi +\frac{233}{8}\cos 2\xi -27\cos 3\xi -\frac{25}{32}\cos 4\xi \right) ,\\ E_h&=\frac{1}{32}\left( e^{-i\xi }+81e^{-3i\xi }\right) +\frac{e^{-6i\xi }}{32\varDelta ^9}P_E\left( e^{i\xi }\right) ,\\ F_h&=-\frac{7}{4}e^{2i\xi }+\frac{e^{-3i\xi }}{4\varDelta ^9}P_F\left( e^{i\xi }\right) ,\\ P_E\!\left( X\right)&=-\frac{9}{8}\!+\!15X\!-\!\frac{349}{2}X^2\!+\!171X^3\!+\!\frac{2889}{4}X^4\!-\!1571X^5\!+\!\frac{2007}{2}X^6\!-\!87X^7\!-\!\frac{625}{8}X^8,\\ P_F\!\left( X\right)&=\frac{207}{32}\!+\!\frac{303}{8}X\!-\!\frac{577}{4}X^2\!+\!\frac{603}{8}X^3\!+\!\frac{2511}{16}X^4\!-\!\frac{1475}{8}X^5\!+\!45X^6\!+\!\frac{57}{8}X^7\!-\!\frac{5}{32}X^8. \end{aligned} \end{aligned}$$
(72)

We now give the expressions of the coefficients appearing in the tidal Hamiltonian (41) for the second and fourth order in eccentricity. We have

$$\begin{aligned} \begin{aligned}&B_t^j=\frac{3}{8}-\frac{15}{8}\cos 2\left( \Delta \lambda _j-\Delta \theta _j \right) ,\\&C_t^j=\frac{3}{32}e^{i\left( \Delta \lambda _j-2\Delta \theta _j \right) }+\frac{9}{16}e^{-i\Delta \lambda _j}+\frac{147}{32}e^{-i\left( 3\Delta \lambda _j-2\Delta \theta _j \right) },\\&D_t^j=\frac{3}{8}+\frac{69}{64}\cos 2\left( \Delta \lambda _j-\Delta \theta _j\right) ,\\&G_t^j=\frac{9}{16}+\frac{75}{16}\cos 2\left( \Delta \lambda _j-\Delta \theta _j\right) ,\\&E_t^j=\frac{81}{64}e^{-2i\Delta \lambda _j}+\frac{867}{32}e^{-2i\left( 2\Delta \lambda _j-\Delta \theta _j\right) },\\&F_t^j=\frac{9}{16}e^{i\Delta \lambda _j}-\frac{3}{128}e^{-i\left( \Delta \lambda _j-2\Delta \theta _j\right) }-\frac{1365}{128}e^{i\left( 3\Delta \lambda _j-2\Delta \theta _j\right) }, \end{aligned} \end{aligned}$$
(73)

with

$$\begin{aligned} \Delta \lambda _j=\lambda _j-\lambda _j^{\bigstar }\;\;\text { and }\;\;\Delta \theta _j=\theta _j-\theta _j^{\bigstar }. \end{aligned}$$
(74)

Lagrange and anti-Lagrange in horseshoe-shaped orbits

Here, we show that the Lagrange and anti-Lagrange proper modes correspond to aligned and anti-aligned pericentres in horseshoe-shaped orbits. The matrix of the variational equations (27), once averaged over the semi fast dynamics and according to the geometrical considerations stated at the end of Sect. 2.3, reads

$$\begin{aligned} \mathcal {M}_0=-i\begin{pmatrix}\frac{m_2}{m_0}\underline{A}_h&{}\quad \frac{m_2}{m_0}\underline{B}_h\\ \frac{m_1}{m_0}\underline{B}_h&{}\quad \frac{m_1}{m_0}\underline{A}_h \end{pmatrix}, \end{aligned}$$
(75)

where both \(\displaystyle {\underline{A}_h}\) and \(\displaystyle {\underline{B}_h}\), average of \(\displaystyle {A_h}\) and \(\displaystyle {B_h}\) over the semi-fast dynamics, are real. The eigenvectors of \(\displaystyle {\mathcal {M}_0}\) show that for the Lagrange configuration

$$\begin{aligned} \arg \left( \frac{X_1}{X_2}\right) =\varpi _1-\varpi _2=0, \end{aligned}$$
(76)

while for the anti-Lagrange configuration

$$\begin{aligned} \arg \left( \frac{X_1}{X_2}\right) =\varpi _1-\varpi _2=\pi . \end{aligned}$$
(77)

This corresponds to aligned and anti-aligned pericentres.

Conservation of the total angular momentum

Here, we show that the set of equations (51) is consistent with the conservation of the total angular momentum of the system. The normalizedFootnote 6 total angular momentum \(\displaystyle {\mathcal {C}}\) reads (Robutel and Pousse 2013)

(78)

From (51), we get

$$\begin{aligned} \dot{\mathcal {C}}=\sum _{j\in \left\{ 1,2\right\} }3\frac{q_j}{Q_j}\frac{m_0}{m}\mathcal {R}_j^{-13}X_j\bar{X}_j\left\{ {\,}h_2^j-k_2^j+p_2^j+\mathcal {R}_j^{-1}X_j\bar{X}_j\left( h_4^j-k_4^j+p_4^j \right) {\,}\right\} , \end{aligned}$$
(79)

and the total angular momentum is conserved since we have

$$\begin{aligned} \begin{aligned}&h_2^j-k_2^j+p_2^j=0 \quad \text { and}\\&h_4^j-k_4^j+p_4^j=0. \end{aligned} \end{aligned}$$
(80)

Diagonalization of a perturbed matrix

We show here the method that we use to obtain the eigenvalues of a perturbed matrix once a diagonal basis of the principal matrix is known. Indeed, the computation of the eigenvalues (60) is equivalent to finding the roots of the characteristic polynomial of \(\displaystyle {\mathcal {Z}_0+\mathcal {Z}_1}\), given in Eqs. (94) and (95). Even when the degree of this polynomial is reduced to four using the \(\displaystyle {0}\) eigenvalue, it is hard to obtain its roots in a convenient form. The method we use here, briefly presented by Laskar et al. (2012), gives the eigenvalues and eigenvectors very easily.

Let \(\displaystyle {\mathcal {M}=\mathcal {M}_0+\zeta \mathcal {M}_1\in \mathcal {M}_n\left( \mathbb {C}\right) }\) be a \(\displaystyle {n\times n}\) complex matrix where \(\displaystyle {\zeta }\) is a small quantity with respect to \(\displaystyle {1}\). Assume that we know a diagonal basis for \(\displaystyle {\mathcal {M}_0}\)

$$\begin{aligned} \mathcal {D}_0=P_0^{-1}\mathcal {M}_0P_0=\text {diag}\left( \lambda _i\right) , \end{aligned}$$
(81)

where the columns of \(\displaystyle {P_0}\) are the eigenvectors of \(\displaystyle {\mathcal {M}_0}\) and the \(\displaystyle {\lambda _i}\) its eigenvalues, which are not assumed to be of multiplicity one but which are assumed to be sorted by value, that is, equal eigenvalues are consecutive. This does not restrict the generality, as any permutation can be applied on the columns of \(\displaystyle {P_0}\) to achieve that. We now define

$$\begin{aligned} \mathcal {Q}_1=P_0^{-1}\mathcal {M}_1P_0. \end{aligned}$$
(82)

If \(\displaystyle {P}\) is the matrix of the eigenvectors of \(\displaystyle {\mathcal {D}_0+\zeta \mathcal {Q}_1}\), and since \(\displaystyle {\mathcal {D}_0+\zeta \mathcal {Q}_1}\) is near diagonal, we write

$$\begin{aligned} P=I_n+\zeta P_1+\mathcal {O}\left( \zeta ^2\right) . \end{aligned}$$
(83)

We have

$$\begin{aligned} P^{-1}\left( \mathcal {D}_0+\zeta \mathcal {Q}_1\right) P=\mathcal {D}_0+\zeta \left( {\,}\mathcal {Q}_1+\left[ \mathcal {D}_0,P_1\right] {\,}\right) +\mathcal {O}\left( \zeta ^2\right) , \end{aligned}$$
(84)

where \(\displaystyle {\left[ \mathcal {D}_0,P_1\right] =\mathcal {D}_0P_1-P_1\mathcal {D}_0}\). Thus, the cohomological equation

$$\begin{aligned} \mathcal {Q}_1+\left[ \mathcal {D}_0,P_1\right] =\mathcal {D}_1, \end{aligned}$$
(85)

where \(\displaystyle {\mathcal {D}_1=\text {diag}\left( q_{i,i}\right) }\) is the diagonal matrix composed of the diagonal terms of \(\displaystyle {\mathcal {Q}_1}\). The solution of the cohomological equation is

$$\begin{aligned} p_{i,j}=\left\{ \begin{array}{ll} \frac{q_{i,j}}{\lambda _j-\lambda _i}&{}\quad \text { if }\lambda _i\ne \lambda _j, \\ 0&{}\quad \text { else},\end{array}\right. \end{aligned}$$
(86)

where

$$\begin{aligned} \mathcal {Q}_1=\left( q_{i,j}\right) _{1\le i,j\le n}\;\;\;\;\;\text {and}\;\;\;\;\;P_1=\left( p_{i,j}\right) _{1\le i,j\le n}. \end{aligned}$$
(87)

The matrix \(\displaystyle {\mathcal {M}_0+\zeta \mathcal {M}_1}\) is now block diagonal:

$$\begin{aligned} P^{-1}P_0^{-1}\left( \mathcal {M}_0+\zeta \mathcal {M}_1\right) P_0P=\text {diag}\left( \mathcal {B}_0^1+\zeta \mathcal {B}_1^1,\,...\,,\mathcal {B}_0^r+\zeta \mathcal {B}_1^r\right) ,\;\;\;\;\;r\le n \end{aligned}$$
(88)

where \(\displaystyle {\forall i\le r\;\;\exists k\le n}\) such that

$$\begin{aligned} \mathcal {B}_0^i=\lambda _kI_{m(k)}, \end{aligned}$$
(89)

and \(\displaystyle {m(k)}\) denotes the multiplicity of \(\displaystyle {\lambda _k}\) and thus the size of the block. The computation of the eigenvalues of \(\displaystyle {\mathcal {M}_0+\zeta \mathcal {M}_1}\) is reduced to the computation of the eigenvalues of the blocks \(\displaystyle {\mathcal {B}_0^i+\zeta \mathcal {B}_1^i}\) who are hopefully all of small size and whose eigenvalues are then analytically easily found.

Linearization

Near the fixed points given by (53), the linear system reads

$$\begin{aligned} \dot{\mathcal {X}}=\left( \mathcal {Q}_0+\mathcal {Q}_1\right) \mathcal {X}, \end{aligned}$$
(90)

where \(\displaystyle {\mathcal {X}}\) is defined in Sect. 3.2.2. We have

$$\begin{aligned} \mathcal {Q}_0=\begin{pmatrix}\mathcal {Z}_0&{}\quad 0_{5,2}\\ 0_{2,5}&{}\quad \mathcal {M}_0\end{pmatrix}\;\;\text { and }\;\;\mathcal {Q}_1=\begin{pmatrix}\mathcal {Z}_1&{}\quad 0_{5,2}\\ 0_{2,5}&{}\quad \mathcal {M}_1\end{pmatrix}, \end{aligned}$$
(91)

where

$$\begin{aligned} \mathcal {M}_0= & {} \frac{27}{8}i\begin{pmatrix}\frac{m_2}{m_0}&{}-\frac{m_2}{m_0}e^{i\pi /3}\\ -\frac{m_1}{m_0}e^{-i\pi /3}&{}\frac{m_1}{m_0}\end{pmatrix}, \end{aligned}$$
(92)
$$\begin{aligned} \mathcal {M}_1= & {} -\frac{21}{2}\text {diag}\left\{ {\,}q_1\frac{m_0}{m_1}\left( \eta \Delta t_1-\frac{5}{7}i\right) ,q_2\frac{m_0}{m_2}\left( \eta \Delta t_2-\frac{5}{7}i\right) {\,}\right\} , \end{aligned}$$
(93)
$$\begin{aligned} \mathcal {Z}_0= & {} \begin{pmatrix} 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad -3\gamma &{}\quad 0\\ 0&{}\quad 0&{}\quad \frac{1}{3}\gamma ^{-1}\nu ^2&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \end{pmatrix}, \end{aligned}$$
(94)
$$\begin{aligned} \mathcal {Z}_1= & {} \begin{pmatrix} -d_1 &{}\quad 0 &{}\quad 0 &{}\quad 3\gamma ^{-1}\delta ^{-1}d_1 &{}\quad 3\gamma ^{-1}d_1 \\ 0 &{}\quad -d_2 &{}\quad 0 &{}\quad -3\gamma \delta d_2 &{}\quad 3\gamma ^{-1}d_2 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad -\gamma \left( \delta c_2+\left( 1-\delta \right) c_1\right) &{}\quad \gamma ^{-1}\left( c_2-c_1\right) \\ -\left( 1-\delta \right) b_1 &{}\quad \delta b_2 &{}\quad 0 &{}\quad 3\gamma \left( \delta ^2b_2+\left( 1-\delta \right) ^2b_1 \right) &{}\quad 3\gamma ^{-1}\left[ \left( 1-\delta \right) b_1-\delta b_2\right] \\ -b_1 &{}\quad -b_2 &{}\quad 0 &{}\quad 3\gamma ^{-1}\delta ^{-1}b_1-3\gamma \delta b_2 &{}\quad 3\gamma ^{-1}\left( b_1+b_2 \right) \end{pmatrix},\nonumber \\ \end{aligned}$$
(95)

with

(96)

Near \(\displaystyle {L_{4,5}}\), the eigenvectors of \(\displaystyle {\mathcal {M}_0+\mathcal {M}_1}\), computed using results from “Appendix E” reveal that the Lagrange configuration corresponds to

$$\begin{aligned} \begin{aligned}&\varpi _1-\varpi _2=\frac{\pi }{3}+\frac{28}{9}\frac{m_0^2\left( m_1q_2/Q_2+m_2q_1/Q_1\right) }{m_1m_2\left( m_1+m_2\right) },\\ {}&\frac{e_1}{e_2}=1+\frac{20}{9}\frac{m_0^2\left( q_2m_1-q_1m_2\right) }{m_1m_2\left( m_1+m_2\right) }, \end{aligned} \end{aligned}$$
(97)

while the anti-Lagrange configuration complies with

$$\begin{aligned} \begin{aligned}&\varpi _1-\varpi _2=\frac{4\pi }{3}-\frac{28}{9}\frac{m_0^2\left( m_1q_2/Q_2+m_2q_1/Q_1\right) }{m_1m_2\left( m_1+m_2\right) },\\&\frac{e_1}{e_2}=\frac{m_2}{m_1}\left( 1-\frac{20}{9}\frac{m_0^2\left( q_2m_1-q_1m_2\right) }{m_1m_2\left( m_1+m_2\right) }\right) . \end{aligned} \end{aligned}$$
(98)

Direct 3-body model

The complete equations of motion governing the tidal evolution of a three-body system in an astrocentric frame using a linear constant time-lag tidal model are given by (Mignard 1979)

$$\begin{aligned} \begin{aligned} \frac{\mathrm{d}^2{\vec {r}}_1}{\mathrm{d}t^2}&= -\frac{\mu _1}{r_1^3}\vec {r}_1+ \mathcal {G} m_2\left( \frac{\vec {r}_2-\vec {r}_1}{|\vec {r}_2-\vec {r}_1|^3}-\frac{\vec {r}_2}{r_2^3}\right) + \frac{\vec {f}_1}{\beta _1} + \frac{\vec {f}_2}{m_0}, \\ \frac{\mathrm{d}^2{\vec {r}}_2}{\mathrm{d}t^2}&= -\frac{\mu _2}{r_2^3}\vec {r}_2+ \mathcal {G} m_1\left( \frac{\vec {r}_1-\vec {r}_2}{|\vec {r}_1-\vec {r}_2|^3}-\frac{\vec {r}_1}{r_1^3}\right) + \frac{\vec {f}_2}{\beta _2} + \frac{\vec {f}_1}{m_0}, \\ \frac{\mathrm{d}^2{\theta }_i}{\mathrm{d}t^2}&= - \frac{(\vec {r}_i \times \vec {f}_i)\cdot \vec {k}}{C_i} = - 3 \frac{\kappa _{2, i} {{\mathcal {G}}} m_0^2 R_i^3}{\alpha _i m_i r_i^{8}} \Delta t_i \left[ \frac{\mathrm{d}{\theta }_i}{\mathrm{d}t} \, r_i^2 - \left( \vec {r}_i \times \frac{\mathrm{d}{\vec {r}}_i}{\mathrm{d}t} \right) \cdot \vec {k} \right] , \end{aligned} \end{aligned}$$
(99)

where \(\vec {r}_i\) and \(\theta _i\) are the astrocentric position vector and the rotation angle of the planet i, respectively, \(\vec {k}\) is the unit vector normal to the orbital plane of the planets and \(\vec {f}_i\) is the force arising from the tidal potential energy created by the deformation of each planet [Eq. (33)]

$$\begin{aligned} \vec {f}_i = - 3 \frac{\kappa _{2, i} {{\mathcal {G}}} m_0^2 R_i^5}{r_i^{8}} \vec {r}_i -3 \frac{\kappa _{2, i} {{\mathcal {G}}} m_0^2 R_i^5}{r_i^{10}} \Delta t_i \left[ 2 \left( \vec {r}_i \cdot \frac{\mathrm{d}{\vec {r}}_i}{\mathrm{d}t} \right) \vec {r}_i + r_i^2 \left( \frac{\mathrm{d}{\theta }_i}{\mathrm{d}t} \, \vec {r}_i \times \vec {k} + \frac{\mathrm{d}{\vec {r}}_i}{\mathrm{d}t} \right) \right] .\nonumber \\ \end{aligned}$$
(100)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couturier, J., Robutel, P. & Correia, A.C.M. An analytical model for tidal evolution in co-orbital systems. I. Application to exoplanets. Celest Mech Dyn Astr 133, 37 (2021). https://doi.org/10.1007/s10569-021-10032-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-021-10032-w

Keywords

Navigation