Skip to main content
Log in

Spatial unstable periodic quasi-satellite orbits and their applications to spacecraft trajectories

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper explores the rich dynamics of quasi-satellite orbits (QSOs) with out-of-plane motions in the Earth–Moon and Mars–Phobos systems. The first part of the paper computes families of spatial periodic QSOs in the circular restricted three-body problem via bifurcation analyses and presents their orbital characteristics. We pay special attention to unstable families of spatial periodic QSOs of weak instabilities. The second part of the paper presents three applications of the obtained spatial unstable periodic QSOs to space mission trajectories. The first application is concerned with a ballistic landing concept on the surface of Phobos via unstable manifolds emanating from spatial weakly unstable periodic QSOs. The second application identifies stability regions of spatial, long-term stable, quasi-periodic QSOs based on phase-space structures of invariant manifolds emanating from spatial unstable periodic QSOs. The third application proposes a method of designing nearly ballistic, two-impulse transfers from a low Earth orbit to a spatial, long-term stable, quasi-periodic QSO around the Moon in the bicircular restricted four-body problem including solar perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  • Anderson, R.L., Easton, R.W., Lo, M.W.: Isolating blocks as computational tools in the circular restricted three-body problem. Phys. D 343, 38–50 (2017)

    Article  MathSciNet  Google Scholar 

  • Baresi, N.: Spacecraft Formation Flight on Quasi-Periodic Invariant Tori. Ph. D. thesis, University of Colorado Boulder (2017)

  • Bezrouk, C., Parker, J.S.: Long term evolution of distant retrograde orbits in the Earth–Moon system. Astrophys. Space Sci. 362, 176 (2017)

    Article  ADS  Google Scholar 

  • da Silva Pais Cabral, F.: On the Stability of Quasi-Satellite Orbits in the Elliptic Restricted Three-Body Problem. Master’s thesis, Universidade Técnica de Lisboa (2011)

  • Canalias, E., Lorda, L., Martin, T., Laurent-Varin, J., Marty, J. C., Mimasu, Y.: Trajectory Analysis for the Phobos Proximity Phase of the MMX Mission. In: International Symposium on Space Technology and Science, ISTS-2017-d-006, Ehime, Japan, 3–9 June (2017)

  • Capdevila, L., Guzzetti, D., Howell, K. C.: Various Transfer Options from Earth into Distant Retrograde Orbits in the Vicinity of the Moon. AAS/AIAA Space Flight Mechanics Meeting, AAS 14-467, Santa Fe, USA, 26–30 January (2014)

  • Capdevila, L.R., Howell, K.C.: A transfer network linking Earth, Moon, and the triangular libration point regions in the Earth-Moon system. Adv. Space. Res. 62, 1826–1852 (2018)

    Article  ADS  Google Scholar 

  • Davis, K., Born, G., Butcher, E.: Transfers to Earth-Moon \(L_3\) halo orbits. Acta Astronaut. 88, 116–128 (2013)

    Article  ADS  Google Scholar 

  • Demeyer, J., Gurfil, P.: Transfer to distant retrograde orbits using manifold theory. J. Guid. Control Dyn. 30, 1261–1267 (2007)

    Article  ADS  Google Scholar 

  • Doedel, E.J., Paffenroth, R.C., Keller, H.B., Dichmann, D.J., Galán-Vioque, J., Vanderbauwhede, A.: Computation of periodic solutions of conservative systems with application to the 3-body problem. Int. J. Bifurc. Chaos 13, 1353–1381 (2003)

    Article  MathSciNet  Google Scholar 

  • Enright, P.J., Conway, B.A.: Discrete approximations to optimal trajectories using direct transcription and nonlinear programming. J. Guid. Control Dyn. 15, 994–1002 (1992)

    Article  ADS  Google Scholar 

  • Folta, D.C., Woodard, M., Howell, K., Patterson, C., Schlei, W.: Applications of multi-body dynamical environments: The ARTEMIS transfer trajectory design. Acta Astronaut. 73, 237–249 (2012)

    Article  ADS  Google Scholar 

  • Giancotti, M., Campagnola, S., Tsuda, Y., Kawaguchi, J.: Families of periodic orbits in Hill’s problem with solar radiation pressure: application to Hayabusa 2. Celest. Mech. Dyn. Astr. 120, 269–286 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • Gómez, G., Koon, W.S., Lo, M.W., Marsden, J.E., Masdemont, J., Ross, S.D.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17, 1571–1606 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • Grebow, D. J.: Generating Periodic Orbits in the Circular Restricted Three-Body Problem with Applications to Lunar South Pole Coverage. Master’s thesis, Purdue University (2006)

  • Hénon, M.: Numerical exploration of the restricted problem. VI. Hill’s case: non-periodic orbits. A&A 9, 24–36 (1970)

    MATH  Google Scholar 

  • Hernando-Ayuso, J., Campagnola, S., Ikenaga, T., Yamaguchi, T., Ozawa, Y., Sarli, B. V., Takahashi, S., Yam, C. H.: OMOTENASHI Trajectory Analysis and Design: Landing Phase. In: International Symposium on Space Technology and Science, ISTS-2017-d-050, Ehime, Japan, 3–9 June (2017)

  • Kawakatsu, Y., Kuramoto, K., Fujimoto, M.: Martian Moons Exploration (MMX) Conceptual Study Results. In: International Symposium on Space Technology and Science, ISTS-2017-k-52, Ehime, Japan, 3–9 June (2017)

  • Keller, H.B.: Numerical Methods for Two-Point Boundary Value Problems. Blaisdell, London (1968)

    MATH  Google Scholar 

  • Keller, H.B.: Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems. Application of Bifurcation Theory. Academic Press, New York (1977)

    MATH  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical Systems, the Three-Body Problem and Space Mission Design. Marsden Books, Wellington (2011)

    MATH  Google Scholar 

  • Lam, T., Whiffen, G. J.: Exploration of Distant Retrograde Orbits around Europa. AAS/AIAA Space Flight Mechanics Meeting, AAS 05-110, Copper Mountain, USA, 23–27 January (2005)

  • Lara, M., Russell, R., Villac, B.F.: Classification of the distant stability regions at Europa. J. Guid. Control Dyn. 30, 409–418 (2007)

    Article  ADS  Google Scholar 

  • Llanos, P. J., Hintz, G. R., Lo, M. W., Miller, J. K.: Powered Heteroclinic and Homoclinic Connections between the Sun-Earth Triangular Points and Quasi-Satellite Orbits for Solar Observations. In: AAS/AIAA Astrodynamics Specialist Conference, AAS 13-786, Hilton Head, USA, 11–15 August (2013)

  • Lo, M. W., Williams, B., Bollman, W. E., Han, D., Hahn, Y., Bell, J. L., Hirst, E. A., Corwin, R. A., Hong, P. E., Howell, K. C., Barden, B., Wilson, R.: GENESIS Mission Design. In: AAS/AIAA Astrodynamics Specialist Conference, AIAA 98-4468, Boston, USA, 10–12 August (1998)

  • Ming, X., Shijie, X.: Exploration of distant retrograde orbits around Moon. Acta Astronaut. 65, 853–860 (2009)

    Article  ADS  Google Scholar 

  • Muñoz-Almaraz, F.J., Freire, E., Galán, J., Doedel, E., Vanderbauwhede, A.: Continuation of periodic orbits in conservative and Hamiltonian systems. Phys. D 181, 1–38 (2003)

    Article  MathSciNet  Google Scholar 

  • Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, New York (1999)

    MATH  Google Scholar 

  • Nagata, K., Sakamoto, Habaguchi, Y.: Center Manifold Method for the Orbit Design of the Restricted Three Body Problem. In: 54th IEEE Conference on Decision and Control, Osaka, Japan, 15–18 December (2015)

  • Oshima, K., Yanao, T.: Jumping mechanisms of Trojan asteroids in the restricted three- and four-body problems. Celest. Mech. Dyn. Astr. 122, 53–74 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Oshima, K., Yanao, T.: Transport Dynamics of Co-Orbital Asteroids via Invariant Manifolds for Space Mission Trajectories. In: 68th International Astronautical Congress, IAC-17-C1.8.8, x39626, Adelaide, Australia, 25–29 September (2017)

  • Oshima, K., Topputo, F., Yanao, T.: Low-energy transfers to the Moon with long transfer time. Celest. Mech. Dyn. Astr. 131, 4 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Parker, J.S., Anderson, R.L.: Low-Energy Lunar Trajectory Design. Wiley, Hoboken (2014)

    Book  Google Scholar 

  • Parker, J. S., Bezrouk, C. J., Davis, K. E.: Low-Energy Transfers to Distant Retrograde Orbits. In: 25th AAS/AIAA Space Flight Mechanics Meeting, AAS 15-311, Williamsburg, USA, 11–15 January (2015)

  • Ren, Y., Shan, J.: Numerical study of the three-dimensional transit orbits in the circular restricted three-body problem. Celest. Mech. Dyn. Astr. 114, 415–428 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Robin, I.A., Markellos, V.V.: Numerical determination of three-dimensional periodic orbits generated from vertical self-resonant satellite orbits. Celest. Mech. 21, 395–434 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  • Russell, R.P.: Global search for planar and three-dimensional periodic orbits near Europa. J. Astronaut. Sci. 54, 199–226 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Scheeres, D., Van Wal, S., Olikara, Z., Baresi, N.: The Dynamical Environment for the Exploration of Phobos. In: International Symposium on Space Technology and Science, ISTS-2017-d-007, Ehime, Japan, 3–9 June (2017)

  • Scott, C.J., Spencer, D.B.: Transfers to sticky distant retrograde orbits. J. Guid. Control Dyn. 33, 1940–1946 (2010)

    Article  ADS  Google Scholar 

  • Simó, C., Gómez, G., Jorba, À., Masdemont, J.: The Bicircular Model Near the Triangular Libration Points of the RTBP. In: Roy, A.E., Steves, B.A. (eds.) From Newton to Chaos. Springer, Boston (1995)

    MATH  Google Scholar 

  • Strange, N., Landau, D., McElrath, T., Lantoine, G., Lam, T.: Overview of Mission Design for NASA Asteroid Redirect Robotic Mission Concept. In: 33rd International Electric Propulsion Conference, IEPC-2013-321, Washington, USA, 6–10 October (2013)

  • Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press Inc, New York (1967)

    MATH  Google Scholar 

  • Topputo, F.: On optimal two-impulse Earth-Moon transfers in a four-body model. Celest. Mech. Dyn. Astr. 117, 279–313 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • Vaquero, M., Howell, K.C.: Design of transfer trajectories between resonant orbits in the Earth–Moon restricted problem. Acta Astronaut. 94, 302–317 (2014)

    Article  ADS  Google Scholar 

  • Villac, B.F.: Using FLI maps for preliminary spacecraft trajectory design in multi-body environments. Celest. Mech. Dyn. Astr. 102, 29–48 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Voyatzis, G., Antoniadou, K.I.: On quasi-satellite periodic motion in asteroid and planetary dynamics. Celest. Mech. Dyn. Astr. 130, 59 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Wallace, M. S., Parker, J. S., Strange, N. J., Grebow, D.: Orbital Operations for Phobos and Deimos Exploration. In: AIAA/AAS Astrodynamics Specialist Conference, AIAA 2012-5067, Minneapolis, USA, 13–16 August (2012)

  • Welch, C.M., Parker, J.S., Buxton, C.: Mission considerations for transfers to a distant retrograde orbit. J. Astronaut. Sci. 62, 101–124 (2015)

    Article  ADS  Google Scholar 

  • Yamakawa, H.: On Earth–Moon Transfer Trajectory with Gravitational Capture. Ph. D. dissertation, The University of Tokyo (1993)

Download references

Acknowledgements

This study has been partially supported by Grant-in-Aid for JSPS Fellows No. 15J07090, and by JSPS Grant-in-Aid, No. 26800207.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenta Oshima.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oshima, K., Yanao, T. Spatial unstable periodic quasi-satellite orbits and their applications to spacecraft trajectories. Celest Mech Dyn Astr 131, 23 (2019). https://doi.org/10.1007/s10569-019-9901-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-019-9901-9

Keywords

Navigation