Skip to main content
Log in

The restricted three-body problem in cylindrical clouds

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The fragmentation of interstellar molecular clouds has been investigated with great effort by many authors. In this paper, a simple model is given to describe the dynamics of two fragments moving in a special cylindrical potential. Using a modified version of the restricted three-body problem and the corresponding Jacobian integral, some constraints are given for the motion of the fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • André, P., Men’shchikov, A., Bontemps, S., Könyves, V., Motte, F., Schneider, N., et al.: From filamentary clouds to prestellar cores to the stellar IMF: initial highlights from the Herschel Gould Belt survey. A&A 518, L102 (2010)

    Article  ADS  Google Scholar 

  • Binney, J., Tremaine, S.: Galactic Dynamics. Princeton Series In Astrophysics. Princeton University Press, Princeton (1987)

    MATH  Google Scholar 

  • Curry, C.L.: Embedded, self-gravitating equilibria in sheetlike and filamentary molecular clouds. ApJ 541, 831–840 (2000)

    Article  ADS  Google Scholar 

  • Fiege, J.D., Pudritz, R.E.: Helical fields and filamentary molecular clouds—i. MNRAS 311, 85–104 (2000)

    Article  ADS  Google Scholar 

  • Fischera, J., Martin, P.G.: Physical properties of interstellar filaments. A&A 542, A77 (2012)

    Article  ADS  Google Scholar 

  • Juvela, M., Ristorcelli, I., Pagani, L., Doi, Y., Pelkonen, V.-M., Marshall, D.J.: Galactic cold cores. iii. General cloud properties. A&A 541, A12 (2012)

    Article  ADS  Google Scholar 

  • Langer, W.D., Velusamy, T., Kuiper, T.B.H., Levin, S., Olsen, E., Migenes, V.: Study of structure and small-scale fragmentation in TMC-1. ApJ 453, 293 (1995)

    Article  ADS  Google Scholar 

  • McKee, C.F., Zweibel, E.G., Goodman, A.A., Heiles, C.: Magnetic fields in star-forming regions – theory. In: Levy, E.H., Lunine, J.I. (eds.) Protostars and Planets III, p. 327 (1993). http://adsabs.harvard.edu/abs/1993prpl.conf..327M

  • Men’shchikov, A., André, P., Didelon, P., Könyves, V., Schneider, N., Motte, F.: Filamentary structures and compact objects in the Aquila and Polaris clouds observed by Herschel. A&A 518, L103 (2010)

    Article  ADS  Google Scholar 

  • Morris, R.: The dilogarithm function of a real argument. Math. Comp. 33, 778–787 (1979)

    Article  MathSciNet  Google Scholar 

  • Ostriker, J.: The equilibrium of polytropic and isothermal cylinders. ApJ 140, 1056 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  • Plummer, H.C.: On the problem of distribution in globular star clusters. MNRAS 71, 460–470 (1911)

    Article  ADS  Google Scholar 

  • Schmid-Burgk, J.: Finite amplitude density variations in a self-gravitating isothermal gas layer. ApJ 149, 727 (1967)

    Article  ADS  Google Scholar 

  • Stodólkiewicz, J.S.: On the gravitational instability of some magneto-hydrodynamical systems of astrophysical interest. Part iii. Acta Astron. 13, 30–54 (1963)

    ADS  MATH  Google Scholar 

  • Szebehely, V.: Theory of Orbits-The Restricted Problem of Three Bodies. Academic Press, Cambridge (1967)

    MATH  Google Scholar 

Download references

Acknowledgements

The first author is grateful for discussions with Drs H. Klahr, F. Biscani and B. Kocsis. This research was partly supported by the OTKA Grant NN-111016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barnabás Deme.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Here, we investigate the linear stability of the collinear equilibrium point found above. First, Eqs. (24) and (25) are linearized (that is, we investigate their behavior at \(x=x_0+\xi \) and \(y=0+\,\eta \), \(x_0\) and 0 being the coordinates of the equilibrium points):

$$\begin{aligned} \ddot{\xi } = -\frac{1}{2}b^2\xi + 2\dot{\eta }\sqrt{1-\frac{1}{2}b^2} + \frac{3}{2}x_0^2\xi + 2m_1 \frac{\xi }{|x_0-b|^3}, \end{aligned}$$
(33)
$$\begin{aligned} \ddot{\eta } = -\frac{1}{2}b^2\eta - 2\dot{\xi }\sqrt{1-\frac{1}{2}b^2} + \frac{1}{2}x_0^2\eta - m_1 \frac{\eta }{|x_0-b|^3}. \end{aligned}$$
(34)

Assuming the solution in the form \(\xi = A e^{\lambda t}\) and \(\eta = B e^{\lambda t}\) with \(A \ne 0\) and \(B \ne 0\), substitution yields

$$\begin{aligned} \begin{pmatrix} -\frac{1}{2}b^2 + \frac{3}{2}x_0^2 + 2m_1 \frac{1}{|x_0-b|^3} -\lambda ^2 &{} 2 \lambda \sqrt{1-\frac{1}{2}b^2} \\ -2 \lambda \sqrt{1-\frac{1}{2}b^2} &{} -\frac{1}{2}b^2+\frac{1}{2}x_0^2-m_1\frac{1}{|x_0-b|^3}-\lambda ^2 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix}=0. \end{aligned}$$
(35)

This leads to the characteristic equation with \(\Lambda = \lambda ^2\)

$$\begin{aligned}&\Lambda ^2+\left( -b^2-2x_0^2-m_1\frac{1}{|x_0-b|^3}+4\right) \Lambda \nonumber \\&\quad +\left( -\frac{b^2}{2}+\frac{3x_0^2}{2}+\frac{2m_1}{|x_0-b|^3}\right) \left( -\frac{b^2}{2}+\frac{x_0^2}{2}-\frac{m_1}{|x_0-b|^3}\right) =0. \end{aligned}$$
(36)

An equilibrium point is stable if and only if \(\Lambda _1, \Lambda _2 < 0\) and real.

Let

$$\begin{aligned} B=-\,b^2-2x_0^2-m_1\frac{1}{|x_0-b|^3}+4 \end{aligned}$$
(37)

and

$$\begin{aligned} C=\left( -\frac{b^2}{2}+\frac{3x_0^2}{2}+\frac{2m_1}{|x_0-b|^3}\right) \left( -\frac{b^2}{2}+\frac{x_0^2}{2}-\frac{m_1}{|x_0-b|^3}\right) , \end{aligned}$$
(38)

so that

$$\begin{aligned} \Lambda ^2+B\Lambda +C=0. \end{aligned}$$
(39)

1.1 \(x_0>b\), the case of \(L_1\)

As \(3x_0^2 > b^2\), the first bracket in C is positive. Using Eq. (30), the second bracket is

$$\begin{aligned}&-\frac{b^2}{2}+\frac{x_0^2}{2}-\frac{m_1}{|x_0-b|^3}\nonumber \\&\quad = -\frac{b^2}{2}+\frac{x_0^2}{2}-\frac{1}{2}\frac{1}{x_0-b}(x_0^3-b^2x_0)=-\frac{1}{2}b(x_0+b)<0. \end{aligned}$$
(40)

In conclusion, C is negative. As \(\Lambda _{1,2}=(-B\pm \sqrt{B^2-4C})/2\) and \(B^2-4C>|B|\), there is always a positive \(\Lambda \) which results in instability.

1.2 \(x_0<-\,b\), the case of \(L_3\)

The first bracket in C is positive again. However, in this case

$$\begin{aligned} -\frac{b^2}{2}+\frac{x_0^2}{2}-\frac{m_1}{|x_0-b|^3}=-\frac{1}{2}b(x_0+b)>0, \end{aligned}$$
(41)

which concludes that C itself is positive. Equation (39) determines a parabola, which has negative roots if both the position (\(-B/2\)) and the value (\(-B^2/4+C\)) of its minimum are negative. Then, the following equations are to be solved:

$$\begin{aligned} B=-b^2-2x_0^2-m_1\frac{1}{|x_0-b|^3}+4 = -b^2-2x_0^2-\frac{1}{2}x_0(x_0+b)+4>0, \end{aligned}$$
(42)

and

$$\begin{aligned} B^2-4C= & {} \left( -b^2-2x_0^2-\frac{1}{2}x_0(x_0+b)+4 \right) ^2\nonumber \\&-4\left( -\frac{1}{2}b(x_0+b) \right) \left( -\frac{b^2}{2}+\frac{3x_0^2}{2} + x_0(x_0+b) \right) >0. \end{aligned}$$
(43)

Assuming again that \(b=0.1\) (see Sect. 4), the condition of stability is \(-\,1.13< x_0 <-\,0.1\) or \(m_1<1.08\), which seems physically reasonable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deme, B., Érdi, B. & Tóth, L.V. The restricted three-body problem in cylindrical clouds. Celest Mech Dyn Astr 130, 73 (2018). https://doi.org/10.1007/s10569-018-9869-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-018-9869-x

Keywords

Navigation