Skip to main content
Log in

Motions about a fixed point by hypergeometric functions: new non-complex analytical solutions and integration of the herpolhode

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The present study highlights the dynamics of a body moving about a fixed point and provides analytical closed form solutions. Firstly, for the symmetrical heavy body, that is the Lagrange–Poisson case, we compute the second (precession, \(\psi \)) and third (spin, \(\varphi \)) Euler angles in explicit and real form by means of multiple hypergeometric (Lauricella) functions. Secondly, releasing the weight assumption but adding the complication of the asymmetry, by means of elliptic integrals of third kind, we provide the precession angle \(\psi \) completing the treatment of the Euler–Poinsot case. Thirdly, by integrating the relevant differential equation, we reach the finite polar equation of a special motion trajectory named the herpolhode. Finally, we keep the symmetry of the first problem, but without weight, and take into account a viscous dissipation. The use of motion first integrals—adopted for the first two problems—is no longer practicable in this situation; therefore, the Euler equations, faced directly, are driving to particular occurrences of Bessel functions of order \(-\,1/2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We use, according to Exton (1976) the term “multiple” meaning that the hypergeometric is a function of two, or more, variables.

  2. We assume that the spinning top mass M does not change during its motion.

  3. The periods of elliptic function \(\mathrm {sn}\) are \(4\varvec{K}(k)\) and \(2i\varvec{K}'\). The periods of \(\mathrm {cn}\) are \(4\varvec{K}\) and \(2\varvec{K}+2i\varvec{K}'\) being \(\varvec{K}(k)\) the complete elliptic integral of first kind and \(k'\) the complementary modulus. The imaginary period of such functions is meaningless to the motion. Nevertheless Appell (1898) showed that in the Poinsot torque-free motion, under convenient initial conditions one can associate the body movements twice so that the real period of the former equates the latter imaginary period divided by \(i=\sqrt{-\,1}\).

References

  • Agostinelli, C., Pignedoli, A.: Meccanica Razionale, vol. I. Zanichelli, Bologna (1974)

    MATH  Google Scholar 

  • Andoyer, H.: Cours de mécanique céleste, I. Gauthier-Villars, Paris (1923)

    MATH  Google Scholar 

  • Appell, P.: Interprétation de la période imaginaire dans un mouvement à la Poinsot. Bull. Soc. Math. Fr. 26, 98–102 (1898)

    Article  MathSciNet  MATH  Google Scholar 

  • Appell, P.: Traité de Mécanique Rationelle, Tome Deuxième, Dynamique des Systemes. Gauthier-Villars, Paris (1923)

    Google Scholar 

  • Appell, P., Lacour, E.: Principes de la Théorie des Fonctions Elliptiques et Applications. Gauthier-Villars, Paris (1922)

    MATH  Google Scholar 

  • Arribas, M., Elipe, A.: Attitude dynamics of a rigid body on a Keplerian orbit: a simplification. Celest. Mech. Dyn. Astron. 55(3), 243–247 (1993)

    Article  ADS  MATH  Google Scholar 

  • Aslanov, V.: Rigid Body Dynamics for Space Applications. Butterworth-Heinemann, Oxford (2017)

    MATH  Google Scholar 

  • Aslanov, V., Yudintsev, V.: Dynamics and control of dual-spin gyrostat spacecraft with changing structure. Celest. Mech. Dyn. Astron. 115, 91–105 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bailey, W.N.: Generalized Hypergeometric Series. Cambridge University Press, Cambridge (1935)

    MATH  Google Scholar 

  • Bloch, A., Gurfil, P., Lum, K.: The Serret–Andoyer formalism in rigid-body dynamics, II. Geometry, stabilization and control. Regul. Chaotic Dyn. 12(4), 426–447 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bogoiavlenskii, A.: On particular cases of motion of a heavy rigid body about a fixed point. J. Appl. Math. Mech. 22(5), 873–906 (1958)

    Article  MathSciNet  Google Scholar 

  • Burgatti, P.: Dimostrazione della non esistenza di integrali algebrici (oltre i noti) nel problema del moto d’un corpo pesante intorno a un punto fisso. Rend. Circ. Matem. Palermo 29(1), 369–377 (1910)

    Article  MATH  Google Scholar 

  • Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Scientists. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  • Calvo, M., Franco, J.M., Montjano, J.I., Rández, L.: A note on same exact analytical solutions of the rotation of a rigid body with a external torque. Monografias de la Real Academia de Ciencias de Zaragoza 35(–), 27–39 (2011)

    Google Scholar 

  • Cauchy, A.L.: Exercices de Mathématiques, vol. 2. De Bure Frères, Paris (1827)

    Google Scholar 

  • D’Alembert, J.L.R.: Recherches Sur la Précession des Equinoxes et Sur la Nutation de l’axe de la Terre Dans le Systême Newtonien. David Palné, Paris (1749)

    Google Scholar 

  • D’Alembert, J.L.R.: Opuscules mathématiques ou Mémoires sur différens sujets de géométrie, de méchanique,&C. Briasson, Paris (1768)

  • Deprit, A.: Free rotation of a rigid body studied in the phase plane. Am. J. Phys. 35(5), 424–428 (1967)

    Article  ADS  Google Scholar 

  • Deprit, A., Elipe, A.: Complete reduction of the Euler–Poinsot problem. J. Astronaut. Sci. 41(4), 603–628 (1993)

    ADS  MathSciNet  Google Scholar 

  • Dutka, J.: The early history of the hypergeometric function. Arch. Hist. Exact Sci. 31(1), 15–34 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Elipe, A., Vallejo, M.: On the attitude dynamics of perturbed triaxial rigid bodies. Celest. Mech. Dyn. Astron. 81(1–2), 3–12 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Euler, L.: De progressionibus transcendentibus. Comment. Acad. Sci. Petropolitanæ 41, 36–57 (1738)

    Google Scholar 

  • Euler, L.: Découverte d’un nouveau principe de mécanique. Mém. Acad. Sci. Berlin 6(6), 185–217 (1752)

    Google Scholar 

  • Euler, L.: Theoria Motus Corporum Solidorum seu Rigidorum. A. F. Röse, Rostock (1765)

    Google Scholar 

  • Euler, L.: De curva hypergeometrica hac aequatione expressa \(y=1\cdot 2\cdot 2\cdot 3\dots x\). Novi Comment. Acad. Sci. Petropolitanæ 13, 3–66 (1769)

    Google Scholar 

  • Euler, L.: Institutionum Calculi Integralis, vol. II. Academia Imperialis Scientiarum, Petropoli (1792)

    Google Scholar 

  • Exton, H.: Multiple Hypergeometric Functions and Applications. Ellis Horwood, Chichester (1976)

    MATH  Google Scholar 

  • Fedorov, Y.N., Maciejewski, A.J., Przybylska, M.: The generalized Euler-Poinsot rigid body equations: explicit elliptic solutions. J. Phys. A Math. Theor. 46(41), 415,201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Golubev, V.: Lectures on Integration of the Equations of Motion of a Rigid Body About a Fixed Point. Israel Program for Scientific Translations, Haifa (1960)

    MATH  Google Scholar 

  • Gomes Teixeira, F.: Traité des Courbes Speciales Remarquables Planes et Gauches, Tome II. Impresa da Universidade, Coimbra (1909)

    Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M., Jeffrey, A., Zwillinger, D.: Table of Integrals, Series, and Products. Academic Press, New York (2007)

    Google Scholar 

  • Grammel, R.: Der Kreisel: Seine Theorie und Seine Anwendungen. Springer, Berlin (1950)

    Book  MATH  Google Scholar 

  • Greenhill, A.G.: The Applications of Elliptic Functions. Dover, New York (1959)

    MATH  Google Scholar 

  • Grioli, G.: Esistenza e determinazione delle precessioni regolari dinamicamente possibili per un solido pesante asimmetrico. Ann. Math. 36(3/4), 271–281 (1947)

    MathSciNet  MATH  Google Scholar 

  • Gurfil, P.: Canonical formalism for modelling and control of rigid body dynamics. Ann. N. Y. Acad. Sci. 1065(1), 391–413 (2005)

    Article  ADS  Google Scholar 

  • Hess, W.: Über die Eulerschen Bewegungsgleichungen und über eine neue particuläre Lösung des Problems der Bewegung eines starren Körpers um einen festen Punkt. Math. Ann. 37, 153–181 (1890)

    Article  MathSciNet  MATH  Google Scholar 

  • Ismail, A., Amer, T.: A necessary and sufficient condition for solving a rigid body problem. Tech. Mech. 31(1), 50–57 (2011)

    Google Scholar 

  • Ivanova, E.: A new approach to the solution of some problems of rigid body dynamics. ZAMM 81(9), 613–622 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Jacobi, C.G.J.: Sur la rotation d’un corps, extrait d’une lettre adressée à l’académie des sciences de Paris. J. Reine Angew. Math. 39, 293–350 (1850)

    Article  MathSciNet  Google Scholar 

  • Jacobi, C.G.J.: Second Mémoire sur la Rotation d’un Corps Non soumis à des Forces Accélératrices, Gesammelte Werke, zweite Band. Reimer, Berlin (1882)

    Google Scholar 

  • Klein, F., Sommerfeld, A.: The Theory of the Top, vol. III. Springer, New York (2010)

    Book  MATH  Google Scholar 

  • Kovalèvskaja, S.: Sur le problème de la rotation d’un corps solide autour d’un point fixe. Acta Math. 12(1), 177–232 (1889)

    Article  MathSciNet  Google Scholar 

  • Kovalevski, N.: Eine neue particuläre Lösung der Differentialgleichungen der Bewegung eines schweren starren Körpers um einen festen Punkt. Math. Ann. 65, 528–537 (1908)

    Article  MathSciNet  MATH  Google Scholar 

  • Kraniotis, G.: Periapsis and gravitomagnetic precessions of stellar orbits in Kerr and Kerr de Sitter black hole spacetimes. Class. Quantum Gravity 24(7), 1775–1808 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lagrange, J.L.: Mécanique Analytique, Quatrième édition. Courcier, Paris (1889)

    Google Scholar 

  • Lainé, E.: Exercices de Mécanique. Librairie Vuibert, Paris (1958)

    Google Scholar 

  • Landau, L.D., Lifshits, E.M.: Theoretical Physics: Mechanics, vol. I. Pergamon Press, Oxford (1988)

    MATH  Google Scholar 

  • Lauricella, G.: Sulle funzioni ipergeometriche a più variabili. Rend. Circ. Mat. Palermo 7(1), 111–158 (1893)

    Article  MATH  Google Scholar 

  • Lawden, D.F.: Elliptic Functions and Applications. Springer, Boston (2013)

    MATH  Google Scholar 

  • Legendre, A.M.: Exercices de Calcul intégral sur Divers Ordres de Transcendantes et sur les Quadratures. Courcier, Paris (1811)

    Google Scholar 

  • Legendre, A.M.: Traité des Fonctions Elliptiques et des Intégrales Eulériennes, Tome Premier. Huzard-Courcier, Paris (1826)

    Google Scholar 

  • Leimanis, E.: The General Problem of the Motion of Coupled Rigid Bodies About a Fixed Point. Springer, New York (1965)

    Book  MATH  Google Scholar 

  • Levi Civita, T., Amaldi, U.: Lezioni di Meccanica Razionale, vol. II. Zanichelli, Bologna (1989)

    MATH  Google Scholar 

  • Liouville, R.: Sur le mouvement d’un corps solide pesant suspendu par l’un des ses points. Acta Math. 20(1), 239–284 (1896)

    MathSciNet  MATH  Google Scholar 

  • Longuski, J., Gick, A., Muhammad, A., Randall, L.: Analytical solutions for thrusting, spinning spacecraft subject to constant forces. J. Guid. Control Dyn. 28(6), 1301–1308 (2005)

    Article  ADS  Google Scholar 

  • Lurie, A.I.: Analytical Mechanics. Springer, New York (2002)

    Book  MATH  Google Scholar 

  • Magnus, K.: Kreisel: Theorie und Anwendungen. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  • Manacorda, T.: Sul moto di un solido attorno a un punto fisso. Ric. Sci. 20, 487–490 (1950)

    MathSciNet  MATH  Google Scholar 

  • Mingari Scarpello, G., Ritelli, D.: Exact solutions of nonlinear equation of rod deflections involving the Lauricella hypergeometric functions. Int. J. Math. Math. Sci. 2011(1), 1–22 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Moulton, F.R.: Differential Equations. Dover, New York (1958)

    MATH  Google Scholar 

  • Paladini, B.: Sul moto di rotazione di un corpo rigido intorno a un punto fisso. Ann. Sci. Norm. Super. Pisa 5, 165–226 (1888)

    MathSciNet  MATH  Google Scholar 

  • Pars, L.A.: A Treatise on Analytical Dynamics. Heinemann, London (1965)

    MATH  Google Scholar 

  • Poinsot, L.: Théorie nouvelle de la rotation des corps. J. Mat. Pures Appl. 1(16), 127 (1851)

    Google Scholar 

  • Poisson, S.D.: Traité de Mécanique, Troisième édition, vol. 2. Hauman et Compagnie, Bruxelles (1838)

    Google Scholar 

  • Polyanin, A.D., Zaitsev, V.F.: Exact Solutions for Ordinary Differential Equations. Chapman and Hall/CRC, Boca Raton (2003)

    MATH  Google Scholar 

  • Romano, M.: Exact analytic solutions for the rotation of an axially symmetric rigid body subjected to a constant torque. Celest. Mech. Dyn. Astron. 101(4), 375–390 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Rosenberg, R.M.: Analytical Dynamics of Discrete Systems. Plenum Press, New York (1977)

    Book  MATH  Google Scholar 

  • Routh, E.J.: The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies. Dover, New York (1955)

    MATH  Google Scholar 

  • Saran, S.: Hypergeometric functions of three variables. Ganita 5(1), 77–91 (1954)

    MathSciNet  MATH  Google Scholar 

  • von Segner, J.A.: Specimen Theoriæ  Turbinum. Gebauer, Halle (1755)

    Google Scholar 

  • Serret, J.A.: Mémoire sur l’emploi de la méthode de la variation des arbitraires dans le théorie des mouvements de rotations. Mém. Acad. Sci. Paris 35, 585–616 (1866)

    Google Scholar 

  • Slater, L.J.: Generalized Hypergeometric Functions. Cambridge University Press, Cambridge (1966)

    MATH  Google Scholar 

  • Soare, M.V., Teodorescu, P.P., Toma, I.: Ordinary Differential Equations with Applications to Mechanics. Springer, Dordrecht (2007)

    MATH  Google Scholar 

  • Staude, O.: Über permanente rotationen bei der Bewegung eines schweren Körpers um einen festen Punkt. J. Reine Angew. Math. 113, 318–334 (1890)

    MATH  Google Scholar 

  • Synge, J.L., Griffith, B.A.: Principles of Mechanics, 2nd edn. McGraw-Hill, New York (1949)

    MATH  Google Scholar 

  • Teodorescu, P.: Mechanical Systems, Classical Models, II. Springer, New-York (2009)

    Book  MATH  Google Scholar 

  • Tisserand, F.: Traité de Mécanique Céleste, II. Gauthier-Villars, Paris (1890)

    Google Scholar 

  • Tsiotras, P., Longuski, J.: Analytic solution of Euler’s equations of motion for an asymmetric rigid body. J. Appl. Mech. 63(1), 149–155 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Vrbik, J.: Motion of a spinning top. Math.® J. 14, 1–11 (2012)

    Google Scholar 

  • Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, Cambridge (1988)

    Book  MATH  Google Scholar 

  • Wittenburg, J.: Dynamics of Multibody Systems. Springer, New York (2007)

    MATH  Google Scholar 

Download references

Acknowledgements

The second author is partially supported by an Italian RFO research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Ritelli.

Appendices

Appendix: Hypergeometric identities

We recall hereinafter an outline of the Lauricella hypergeometric functions. The first hypergeometric historical series appeared in the Wallis’s Arithmetica infinitorum (1656):

$$\begin{aligned} {}_2\mathrm {F}_{1}\left( \left. \begin{array}{c} a,b\\ c \end{array} \right| x\right) =1+\frac{a\, b}{1\cdot c}x+\frac{a\, (a+1)\, b \, (b+1)}{1\cdot 2\cdot c\cdot (c+1)}x^{2}+\cdots , \end{aligned}$$

for \(|x|<1\) and real parameters \(a,\,b,\,c.\) The product of n ascending factors:

$$\begin{aligned} (\lambda )_{n}=\lambda \left( \lambda +1\right) \cdots \left( \lambda +n-1\right) =\frac{\Gamma (\lambda +n)}{\Gamma (\lambda )}, \end{aligned}$$

called Pochhammer symbol (or truncated factorial), allows to represent \(_{2}F_{1}\) as:

$$\begin{aligned} _2\mathrm {F}_{1}\left( \left. \begin{array}{c} a,b\\ c \end{array} \right| x\right) =\sum _{n=0}^{\infty }\frac{\left( a\right) _{n}\left( b\right) _{n}}{\left( c\right) _{n}}\frac{x^{n}}{n!}. \end{aligned}$$

A meaningful contribution on various \(_{2}F_{1}\) topics is ascribed to Euler in three papers (Euler 1738, 1769, 1792), but he does not seem (Dutka 1984) to have known the integral representation:

$$\begin{aligned} {}_2\mathrm {F}_{1}\left( \left. \begin{array}{c} a,b\\ c \end{array} \right| x\right) =\frac{\Gamma (c)}{\Gamma (a)\Gamma (c-a)}\,\int _{0}^{1} \frac{u^{a-1}(1-u)^{c-a-1}}{(1-xu)^{b}}\,\mathrm {d}u, \end{aligned}$$

really due to Legendre (1811), sect. 2. The above integral relationship is true if \(c>a>0\) and for \(\left| x\right| <1,\) even if this limitation can be discarded thanks to the analytic continuation.

Many functions have been introduced in nineteenth century for generalizing the hypergeometric functions to multiple variables. We recall the Appell \(\mathrm{F}_1\) two-variable hypergeometric series, defined as:

$$\begin{aligned} \mathrm {F}_{1}\left( \left. \begin{array}{c} a;b_{1},b_{2} \\ c \end{array} \right| x_{1},x_{2}\right) =\sum _{m_{1}=0}^{\infty }\sum _{m_{2}=0}^{\infty } \frac{(a)_{m_{1}+m_{2}}(b_{1})_{m_{1}}(b_{2})_{m_{2}}}{(c)_{m_{1}+m_{2}}} \frac{x_{1}^{m_{1}}}{m_{1}!}\frac{x_{2}^{m_{2}}}{m_{2}!},\quad |x_{1}|<1,\,|x_{2}|<1. \end{aligned}$$

The analytic continuation of Appell’s function on \(\mathbb {C}\setminus [1,\infty )\times \mathbb {C}\setminus [1,\infty )\) comes from its integral representation theorem: if \(\mathrm {Re}\,(a)>0\)\(\mathrm {Re}\,(c-a)>0\), then:

$$\begin{aligned} \mathrm {F}_{1}\left( \left. \begin{array}{c} a;b_{1},b_{2} \\ c \end{array} \right| x_{1},x_{2}\right) =\frac{\Gamma (c)}{\Gamma (a)\Gamma (c-a)} \int _{0}^{1}\frac{u^{a-1}\left( 1-u\right) ^{c-a-1}}{\left( 1-x_{1}\,u\right) ^{b_{1}}\left( 1-x_{2}\,u\right) ^{b_{2}}}\,\mathrm {d}u. \end{aligned}$$
(A.1)

The functions introduced and investigated by Lauricella (1893) and Saran (1954) are of our prevailing interest; and among them the hypergeometric function \(F_{D}^{(n)}\) of \(n\in \mathbb {N}^{+}\) variables (and \(n+2\) parameters), see Saran (1954) and Lauricella (1893), defined as:

$$\begin{aligned} \mathrm {F}_{D}^{(n)}\left( \left. \begin{array}{c} a,b_{1},\ldots ,b_{n}\\ c \end{array} \right| x_{1},\ldots ,x_{n}\right) := \sum _{m_{1},\ldots ,m_{n}\in \mathbb {N}}\frac{(a)_{m_{1}+\cdots +m_{n}}(b_{1})_{m_{1}}\cdots (b_{n})_{m_{n}}}{(c)_{m_{1}+\cdots +m_{n}}m_{1}!\cdots m_{n}!}\,x_{1}^{m_{1}}\cdots x_{n}^{m_{m}} \end{aligned}$$

with the hypergeometric series usual convergence requirements \( |x_{1}|<1,\ldots ,|x_{n}|<1\). If \(\mathrm {Re}\,c>\mathrm {Re}\,a>0\) , the relevant Integral Representation Theorem provides:

$$\begin{aligned} \mathrm {F}_{D}^{(n)}\left( \left. \begin{array}{c} a,b_{1},\ldots ,b_{n}\\ c \end{array} \right| x_{1},\ldots ,x_{n}\right) =\frac{ \Gamma (c)}{\Gamma (a)\,\Gamma (c-a)}\,\int _{0}^{1}\,\frac{ u^{a-1}(1-u)^{c-a-1}}{(1-x_{1}u)^{b_{1}}\cdots (1-x_{n}u)^{b_{n}}}\,\mathrm {d }u \end{aligned}$$
(A.2)

allowing the analytic continuation to \(\mathbb {C}^{n}\) deprived of the Cartesian n-dimensional product of the interval \(]1,\infty [\) with itself.

Notice that the integral formula (A.2) allows an easy computer algebra implementation, being (A.2) a parametric integral, which is suitable for each possible numerical computation.

Some integrals evaluation

The reader can find hereinafter some details about the integrations used throughout the text.

1.1 Integral \(I_1\)

Let \(a>b>y>c\) and \(\alpha \) a real number. Consider

$$\begin{aligned} I_1(a,b,c;\alpha ;y)=\int _{c}^y\frac{1-\alpha u}{1-u^2}\frac{\mathrm{d}u}{\sqrt{(a-u)(b-u)(u-c)}}. \end{aligned}$$

To evaluate the integral we normalize the interval of integration, putting:

$$\begin{aligned} s=\frac{u-c}{y-c}; \end{aligned}$$

this leads to this expression for the given integral, where we remark that in the application of our interest we can limit to \(0<c<1\):

$$\begin{aligned} I_1(a,b,c;\alpha ;y)= & {} \frac{\sqrt{y-c}}{(1-c^2) \sqrt{(a-c) (b-c)}}\\&\times \int _0^1\frac{1-c\alpha -\alpha (y-c) s}{\left( 1-\frac{y-c}{1-c}s\right) \left( 1+\frac{y-c}{1+c}s\right) \sqrt{s\left( 1+\frac{ y-c}{c-a}s\right) \left( 1+\frac{y-c}{c-b}s\right) }}\mathrm{d}s, \end{aligned}$$

which is therefore expressible, via the integral representation theorem, in terms of two Lauricella functions of four variables, that is:

$$\begin{aligned} I_1(a,b,c;\alpha ;y)=\frac{\sqrt{y-c}}{(1-c^2) \sqrt{(a-c) (b-c)}}\left( 2(1-c\alpha )X-\frac{2}{3}\alpha (y-c)Y\right) , \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} X&=\mathrm {F}_{D}^{(4)}\left( \left. \begin{array}{c} \frac{1}{2};1,1,\frac{1}{2},\frac{1}{2} \\ \frac{3}{2} \end{array} \right| \frac{y-c}{1-c},-\frac{y-c}{1+c},-\frac{y-c}{c-a},-\frac{y-c}{c-b}\right) \\ Y&=\mathrm {F}_{D}^{(4)}\left( \left. \begin{array}{c} \frac{3}{2};1,1,\frac{1}{2},\frac{1}{2} \\ \frac{5}{2} \end{array} \right| \frac{y-c}{1-c},-\frac{y-c}{1+c},-\frac{y-c}{c-a},-\frac{y-c}{c-b}\right) . \end{aligned} \end{aligned}$$

Moreover integral \(I_1\) could also have been evaluated in terms of elliptic integrals of third kind; in fact following (Byrd and Friedman 1971) entry 233.20 p. 74 we are led to

$$\begin{aligned} I_1(a,b,c;\alpha ;y)=\frac{1}{\sqrt{a-c}}\left( \frac{1-\alpha }{1-c} X_1+\frac{1+\alpha }{1+c}X_2\right) , \end{aligned}$$
(B.1)

where

$$\begin{aligned} \begin{aligned} X_1&=\Pi \left( \text {am}\left( F\left( \arcsin \left( \sqrt{\frac{y-c}{b-c}}\right) ,\sqrt{\frac{b-c}{a-c}}\right) ,\sqrt{\frac{b-c}{a-c}}\right) ,\frac{b-c}{1-c},\sqrt{\frac{b-c}{a-c}}\right) \\ X_2&=\Pi \left( \text {am}\left( F\left( \arcsin \left( \sqrt{\frac{y-c}{b-c}}\right) ,\sqrt{\frac{b-c}{a-c}}\right) ,\sqrt{\frac{b-c}{a-c}}\right) ,-\frac{b-c}{c+1}, \sqrt{\frac{b-c}{a-c}}\right) . \end{aligned} \end{aligned}$$
(B.2)

1.2 Integral \(I_2\)

With the same assumptions of integral \(I_1\), we consider

$$\begin{aligned} I_2(a,b,c;\alpha ;y)=\int _{c}^y\frac{1-\alpha u}{1-u^2}\frac{u}{\sqrt{(a-u)(b-u)(u-c)}}\,\mathrm{d}u. \end{aligned}$$

Using the same change of variable used for \(I_1\), we can also express \(I_2\) in terms of Lauricella functions, namely:

$$\begin{aligned} I_2(a,b,c;\alpha ;y)= & {} \frac{\sqrt{y-c}}{(1-c^2) \sqrt{(a-c) (b-c)}}\\&\times \,\left( 2 c (1-c\alpha )X+\frac{2}{3} (1-2 c \alpha ) (y-c)Y-\frac{2}{5}\alpha \left( (c-y)^2\right) Z\right) , \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} X&=\mathrm {F}_{D}^{(4)}\left( \left. \begin{array}{c} \frac{1}{2};1,1,\frac{1}{2},\frac{1}{2} \\ \frac{3}{2} \end{array} \right| \frac{y-c}{1-c},-\frac{y-c}{1+c},-\frac{y-c}{c-a},-\frac{y-c}{c-b}\right) \\ Y&=\mathrm {F}_{D}^{(4)}\left( \left. \begin{array}{c} \frac{3}{2};1,1,\frac{1}{2},\frac{1}{2} \\ \frac{5}{2} \end{array} \right| \frac{y-c}{1-c},-\frac{y-c}{1+c},-\frac{y-c}{c-a},-\frac{y-c}{c-b}\right) \\ Z&=\mathrm {F}_{D}^{(4)}\left( \left. \begin{array}{c} \frac{5}{2};1,1,\frac{1}{2},\frac{1}{2} \\ \frac{7}{2} \end{array} \right| \frac{y-c}{1-c},-\frac{y-c}{1+c},-\frac{y-c}{c-a},-\frac{y-c}{c-b}\right) . \end{aligned} \end{aligned}$$

Again following Byrd and Friedman (1971) entry 233.20 p. 74 we can express \(I_2\) in terms of elliptic integral of third and first kind as

$$\begin{aligned} I_2(a,b,c;\alpha ;y)=\frac{1}{\sqrt{a-c}}\left( \frac{1-\alpha }{1-c} X_1-\frac{1+\alpha }{1+c}X_2+2\alpha X_3\right) , \end{aligned}$$
(B.3)

where \(X_1\) and \(X_2\) are the same as (B.2) while

$$\begin{aligned} X_3=F\left( \arcsin \left( \sqrt{\frac{y-c}{b-c}}\right) ,\sqrt{\frac{b-c}{a-c}}\right) . \end{aligned}$$
(B.4)

1.3 Integral \(I_3\)

For \(c>1\) we consider

$$\begin{aligned} I_3(y,c)=\int _0^y\frac{\mathrm{sn}^2u}{1-c^2\mathrm{sn}^2u}\,\mathrm{d}u. \end{aligned}$$

The integral appears as entry 337.01 p. 201 of Byrd and Friedman (1971), namely

$$\begin{aligned} I_3(y,c)=\frac{1}{c^2}\left[ \Pi (\mathrm{am}(y),c^2,k)-y\right] . \end{aligned}$$

1.4 Integral \(I_4\)

For \(c<1\) we consider:

$$\begin{aligned} I_4(y,c)=\int _0^y\frac{\mathrm{cn}^2u}{1-c^2\mathrm{sn}^2u}\,\mathrm{d}u. \end{aligned}$$

The integral appears as entry 338.01 p. 202 of Byrd and Friedman (1971), namely

$$\begin{aligned} I_4(y,c)=\frac{1}{c^2}\left[ (c^2-1)\Pi (\mathrm{am}(y),c^2,k)+y\right] . \end{aligned}$$

1.5 Integral \(I_5\)

If \(c<a<y<b\) consider the integral

$$\begin{aligned} I_5(a,b,c;y)=\int _{\sqrt{b}}^y\frac{u}{\sqrt{(a-u^2)(u^2-b)(u^2-c)}}\,\mathrm{d}u. \end{aligned}$$

A natural step is a change of variable \(u^2=x\) which gives the elliptic integral of first kind

$$\begin{aligned} I_5(a,b,c;y)=\frac{1}{2}\int _{b}^{y^2}\frac{\mathrm{d}x}{\sqrt{(a-x)(x-b)(x-c)}}, \end{aligned}$$
(B.5)

which is computed in Gradshteyn et al. (2007) entry 2.131.5 p. 250 and Byrd and Friedman (1971) entry 235.00 leading to:

$$\begin{aligned} I_5(a,b,c;y)=\frac{1}{\sqrt{a-c}}F(\varphi ,k), \end{aligned}$$

being

$$\begin{aligned} \varphi =\arcsin \sqrt{\frac{(a-c)(y^2-b)}{(a-b)(y^2-c)}},\quad k^2=\frac{a-b}{a-c}. \end{aligned}$$

1.5.1 Remark

This integral can, of course, be evaluated using the hypergeometric approach. In fact, if in (B.5) we introduce the change of variable \(s=\frac{x-b}{y^2-b}\) and we obtain:

$$\begin{aligned} I_5(a,b,c;y)=\frac{1}{2}\sqrt{\frac{y^2-b}{(a-b) (b-c)}}\int _0^1\frac{s^{-\frac{1}{2}}}{ \sqrt{\left( 1-\frac{ y^2-b}{a-b}s\right) \left( 1+\frac{y^2-b}{b-c}s\right) }}\,\mathrm{d}s. \end{aligned}$$

Therefore we can use the relevant integral representation, which allows us to express \(I_5\) in terms of the Appell two-variable hypergeometric function:

$$\begin{aligned} I_5(a,b,c;y)=\sqrt{\frac{y^2-b}{(a-b) (b-c)}}\;\mathrm {F}_{1}\left( \left. \begin{array}{c} \frac{1}{2};\frac{1}{2},\frac{1}{2} \\ \frac{3}{2} \end{array} \right| \frac{y^2-b}{a-b},-\frac{y^2-b}{b-c}\right) . \end{aligned}$$

1.6 Integral \(I_6\)

With the same parameters of \(I_5\) we consider

$$\begin{aligned} I_6(a,b,c;y)=\int _{\sqrt{b}}^y\frac{\mathrm{d}u}{u\sqrt{(a-u^2)(u^2-b)(u^2-c)}}. \end{aligned}$$

Again, the change of variable \(u^2=x\) leads to an elliptic integral, namely

$$\begin{aligned} I_6(a,b,c;y)=\frac{1}{2}\int _{b}^{y^2}\frac{\mathrm{d}x}{x\sqrt{(a-x)(x-b)(x-c)}}. \end{aligned}$$
(B.6)

This last integral is tabulated in Gradshteyn et al. (2007) entry 3.137.5 p. 259 and in Byrd and Friedman (1971) entry 235.17, leading to:

$$\begin{aligned} I_6(a,b,c;y)=\frac{1}{bc\sqrt{a-c}}\left[ b\,F(\varphi ,k) -(b-c)\Pi \left( \varphi ,\frac{c}{b}k^2,k\right) \right] , \end{aligned}$$

where \(\varphi \) and k are the same introduced for the fifth integral.

1.6.1 Remark

This integral also can be evaluated using the hypergeometric approach, so using for (B.6) the same change of variable, used for the fifth integral, we obtain the expression:

$$\begin{aligned} I_6(a,b,c;y)=\frac{1}{2b}\sqrt{\frac{y^2-b}{(a-b) (b-c)}}\int _0^1\frac{s^{-\frac{1}{2}}}{\left( 1+\frac{y^2-b}{b}s \right) \sqrt{\left( 1-\frac{ y^2-b}{a-b}s\right) \left( 1+\frac{y^2-b}{b-c}s\right) }}\,\mathrm{d}s, \end{aligned}$$

which drives, using the integral representation, to express \(I_6\) in terms of a Lauricella function of three variables:

$$\begin{aligned} I_6(a,b,c;y)=\frac{1}{b}\sqrt{\frac{y^2-b}{(a-b) (b-c)}}\;\mathrm {F}_{D}^{(3)}\left( \left. \begin{array}{c} \frac{1}{2};1,\frac{1}{2},\frac{1}{2} \\ \frac{3}{2} \end{array} \right| -\frac{y^2-b}{b},\frac{y^2-b}{a-b},-\frac{y^2-b}{b-c}\right) . \end{aligned}$$

1.7 Integral \(I_7\)

We go back to the parameters of the first and second integral \(a>b>y>c\). Here, the integral is quite a simple one, but here we are concerned about its inversion. The integral, given in Gradshteyn et al. (2007) entry 3.131.3 p. 230 and Byrd and Friedman (1971) entry 233.00 is:

$$\begin{aligned} I_7(a,b,c;y)=\int _{c}^y\frac{\mathrm{d}u}{\sqrt{(a-u)(b-u)(u-c)}}=\frac{2}{\sqrt{a-c}}\,F\left( \arcsin \sqrt{\frac{y-c}{b-c}},\sqrt{\frac{b-c}{a-c}}\right) . \end{aligned}$$

The integral inversion, that is the solution with respect to y of the equation \(I_7(a,b,c;y)=L\), is obtained by recalling the Jacobi amplitude \(\mathrm{am}(u,k),\) which is the inverse of the elliptic integral of first kind \(F(\mathrm{am}(u,k),u)=u\) and the Jacobi sinus amplitude \(\mathrm{sn}(u,k)=\sin \mathrm{am}(u,k).\) The inversion formula is

$$\begin{aligned} I_7(a,b,c;y)=L\iff y=c+(b-c)\, \text {sn}^2\left( \frac{L\,\sqrt{a-c}}{2} ,\sqrt{\frac{b-c}{a-c}}\right) . \end{aligned}$$

Observe that the equation has a solution if L is such that

$$\begin{aligned} L\le \frac{2}{\sqrt{a-c}}\,\mathbf{K}\left( \sqrt{\frac{b-c}{a-c}}\right) . \end{aligned}$$

After having cited some books about Lauricella functions we deem to quote papers where their application is best shown as Mingari Scarpello and Ritelli (2011) and Kraniotis (2007).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mingari Scarpello, G., Ritelli, D. Motions about a fixed point by hypergeometric functions: new non-complex analytical solutions and integration of the herpolhode. Celest Mech Dyn Astr 130, 42 (2018). https://doi.org/10.1007/s10569-018-9837-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-018-9837-5

Keywords

Mathematics Subject Classification

Navigation