Skip to main content
Log in

Relativistic satellite orbits: central body with higher zonal harmonics

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Satellite orbits around a central body with arbitrary zonal harmonics are considered in a relativistic framework. Our starting point is the relativistic Celestial Mechanics based upon the first post-Newtonian approximation to Einstein’s theory of gravity as it has been formulated by Damour et al. (Phys Rev D 43:3273–3307, 1991; 45:1017–1044, 1992; 47:3124–3135, 1993; 49:618–635, 1994). Since effects of order \((\mathrm{GM}/c^2R) \times J_k\) with \(k \ge 2\) for the Earth are very small (of order \( 7 \times 10^{-10}\,\times \,J_k\)) we consider an axially symmetric body with arbitrary zonal harmonics and a static external gravitational field. In such a field the explicit \(J_k/c^2\)-terms (direct terms) in the equations of motion for the coordinate acceleration of a satellite are treated first with first-order perturbation theory. The derived perturbation theoretical results of first order have been checked by purely numerical integrations of the equations of motion. Additional terms of the same order result from the interaction of the Newtonian \(J_k\)-terms with the post-Newtonian Schwarzschild terms (relativistic terms related to the mass of the central body). These ‘mixed terms’ are treated by means of second-order perturbation theory based on the Lie-series method (Hori–Deprit method). Here we concentrate on the secular drifts of the ascending node \(<\!{\dot{\Omega }}\!>\) and argument of the pericenter \(<\!{\dot{\omega }}\!>\). Finally orders of magnitude are given and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The dipole \(J_1\) vanishes because of the choice of coordinates (center of mass condition).

  2. It is formula (11) in Hughes (1981), which gives the Hansen coefficients for the cases relevant for us. Note however, that the formula there contains an error: it should read \(1/2^{2j}\) instead of \(1/2^j\) (Schanner 2017).

  3. Consider that in the Euler–Lagrange equations \(\text {d}/\text {d}t = \partial /\partial t + \mathbf {v}\nabla \), which will lead to terms proportional to \(\dot{\mathbf {v}} = \mathbf {a}\). To derive the direct terms of order \(J_k/c^2\) in (6) we insert \(\mathbf {a}= \nabla w + \mathcal {O}_2\) and neglect terms of order \(c^{-4}\).

  4. Here M is the central bodies mass, not to be confused with the mean anomaly M, meant when defining the Delaunay variables.

Abbreviations

\(x^\mu = (ct,\mathbf {x})\) :

Space-time coordinates

\(g_{\mu \nu }\) :

Space-time metric tensor

\(\sigma \) :

Gravitating mass-energy density

G :

Universal gravitational constant

\(P_k\) :

Ordinary Legendre polynomials

\(\alpha _{k,j}\) :

Coefficients in the derivatives of the Legendre polynomials, see (13)

\(J_k\) :

Dimensionless post-Newtonian zonal harmonic

\(\left[ {x} \right] \) :

Greatest integer that is less than or equal to x (Gauss’ bracket)

\(X_k^{pq}(e) \) :

Hansen coefficient

\(F_{kpq} (I) \) :

Kaula inclination function

\(\Phi _{i,j,k,p}(f,\omega )\) :

Special function defined in (39a)

\(\Phi ^*_{i,j,k,p}(f,\omega )\) :

Special function defined in (39b)

\(\Psi _{i,j,k,p}(f,M)\) :

Special function defined in (39c)

STW :

Decomposition of perturbing acceleration into radial, transversal and normal part

\((l,g,h; L,G,H) \equiv (\mathbf {y},\mathbf {Y})\) :

Post-Newtonian Delaunay variables

n :

Mean motion

\(b_m\) :

Defined below (24)

References

  • Beutler, G.: Methods of Celestial Mechanics. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  • Blanchet, L., Damour, T.: Post-Newtonian generation of gravitational waves. Ann. Inst. Henri Poincaré 50, 377–408 (1989)

    MathSciNet  MATH  ADS  Google Scholar 

  • Brumberg, V.: Relativistic Celestial Mechanics. Nauka, Moscow (1972). In russian

    MATH  Google Scholar 

  • Damour, T., Soffel, M., Xu, C.: General-relativistic celestial mechanics. I. Method and definition of reference systems. Phys. Rev. D 43, 3273–3307 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  • Damour, T., Soffel, M., Xu, C.: General-relativistic celestial mechanics. II. Translational equations of motion. Phys. Rev. D 45, 1017–1044 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  • Damour, T., Soffel, M., Xu, C.: General-relativistic celestial mechanics. III. Rotational equations of motion. Phys. Rev. D 47, 3124–3135 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  • Damour, T., Soffel, M., Xu, C.: General-relativistic celestial mechanics. IV. Theory of satellite motion. Phys. Rev. D 49, 618–635 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  • Deprit, A.: Canonical Transformations depending on a small parameter. Celest. Mech. 1, 12–30 (1969)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Garfinkel, B.: The disturbing function for an artificial satellite. Astron. J. 70, 699 (1965)

    Article  ADS  Google Scholar 

  • Hagihara, Y.: Theory of the relativistic trajectories in a gravitational field of Schwarzschild. Jpn. J. Astron. Geophys. 8, 67–176 (1931)

    MATH  Google Scholar 

  • Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems. Springer, Berlin (1993)

    MATH  Google Scholar 

  • Hansen, R.: Multipole moments of stationary spacetimes. J. Math. Phys. 15, 46–52 (1974)

    Article  MATH  ADS  Google Scholar 

  • Heimberger, J., Soffel, M., Ruder, H.: Relativistic effects in the motion of artificial satellites: the oblateness of the central body II. Celest. Mech. Dyn. Astron. 47, 205–217 (1990)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Hori, G.I.: Theory of general perturbations with unspecified canonical variables. Publ. Astron. Soc. Jpn. 18, 287–296 (1966)

    ADS  Google Scholar 

  • Huang, C., Liu, L.: Analytical solutions to the four post-Newtonian effects in a near earth satellite orbit. Celes. Mech. Dyn. Astron. 53, 293–307 (1992)

    Article  MATH  ADS  Google Scholar 

  • Hughes, S.: The computation of tables of Hansen coefficients. Celest. Mech. 29, 101–107 (1981)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Iorio, L.: A critical analysis of a recent test of the Lense–Thirring effect with the LAGEOS satellites. J. Geod. 80, 128–136 (2006)

    Article  MATH  ADS  Google Scholar 

  • Iorio, L.: Post-Newtonian direct and mixed orbital effects due to the oblateness of the central body. Int. J. Mod. Phys. D 24, 1550067 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Kaula, W.M.: Theory of Satellite Geodesy. Blaisdell Publishing Company, Waltham (1966)

    MATH  Google Scholar 

  • Kopeikin, S., Efroimsky, M., Kaplan, G.: Relativistic Celestial Mechanics of the Solar System. Wiley, Weinheim (2011)

    Book  MATH  Google Scholar 

  • Kozai, Y.: The motion of a close earth satellite. Astron. J. 64, 367–377 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  • Lucchesi, D., Anselmo, L., Bassan, M., Pardini, C., Peron, R., Pucacco, G., Visco, M.: Testing the gravitational interaction in the field of the Earth via satellite laser ranging and the laser ranged satellites experiment (LARASE). Class. Quant. Grav. 32, 155012 (2015)

    Article  ADS  Google Scholar 

  • Mielnik, B., Plebanski, J.: A study of geodesic motion in the field of Schwarzschild’s solution. Acta Phys. Polonica 21, 239268 (1962)

    MATH  Google Scholar 

  • Milani, A., Nobili, A., Farinella, P.: Non-gravitational Perturbations and Satellite Geodesy. Adam Hilger, Bristol (1987)

    MATH  Google Scholar 

  • Schanner M (2017) Master thesis. unpublished, Dresden

  • Soffel, M.H.: Relativity in Astrometry, Celestial Mechanics and Geodesy. Springer, Berlin (1989)

    Book  Google Scholar 

  • Soffel, M., Frutos, F.: On the usefulness of relativistic space-times for the description of the Earth’s gravitational field. J. Geod. 90, 1345–1357 (2016)

    Article  ADS  Google Scholar 

  • Soffel, M., Ruder, H., Schneider, M.: The two-body problem in the (truncated) PPN-theory. Celest. Mech. 40, 77–85 (1987)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Soffel, M., Wirrer, R., Schastok, J., Ruder, H., Schneider, M.: Relativistic effects in the motion of artificial satellites: the oblateness of the central body I. Celest. Mech. 42, 81–89 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  • Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Schanner.

Ethics declarations

Conflict of interest

The authors confirm that they have no conflict of interest to declare.

Appendices

Appendix

A. Orbital averages

In this paper, certain averages of functions F over one complete revolution in the unperturbed Keplerian orbit are employed:

(35)

where M and f are the mean and true anomaly, respectively, \(\eta \equiv \sqrt{1 - e^2}\) and

$$\begin{aligned} \frac{a}{r} = \frac{1 + e \cos f}{\eta ^2} \, . \end{aligned}$$
(36)

The following averages are used:

(37a)
(37b)

From these relations, the following special cases can be derived:

(38a)
(38b)
(38c)
(38d)
(38e)
(38f)
(38g)
(38h)
(38i)
(38j)
(38k)

with

$$\begin{aligned} \eta = \sqrt{1 - e^2} = \frac{G}{L}~, \end{aligned}$$

where G and L are Delaunay elements.

B. Solutions for the direct terms

Here, we list the results for all orbital elements. The subscript SP stands for short-periodic, LP for long-periodic and S for secular perturbations. To condense the short-periodic results, we use the functions

$$\begin{aligned} \Phi _{i,j,k,l}(f,\omega )&= \sum _{s=0}^{k+i} \sum _{q=0}^s \left( \begin{array}{c} k+i \\ s \end{array} \right) \left( \begin{array}{c} s \\ q \end{array} \right) \left( \frac{e}{2} \right) ^s \frac{1}{l+j+s-2q}\nonumber \\&\quad \times \,\left[ \begin{array}{c} \sin \\ \cos \end{array} \right] ^\text { k even}_\text { k odd} \left( (l+j+s-2q) f + l \omega \right) \end{aligned}$$
(39a)
$$\begin{aligned} \Phi ^*_{i,j,k,l}(f,\omega )&= \sum _{s=0}^{k+i} \sum _{q=0}^s \left( \begin{array}{c} k+i \\ s \end{array} \right) \left( \begin{array}{c} s \\ q \end{array} \right) \left( \frac{e}{2} \right) ^s\frac{1}{l+j+s-2q}\nonumber \\&\quad \times \,\left[ \begin{array}{c} \cos \\ \sin \end{array} \right] ^\text { k even}_\text { k odd} \left( (l+j+s-2q) f + l \omega \right) \end{aligned}$$
(39b)
$$\begin{aligned} \Psi _{i,j,k,l}(f,M)&= \sum _{s=0}^{k+i} \sum _{q=0}^s \left( \begin{array}{c} k+i \\ s \end{array} \right) \left( \begin{array}{c} s \\ q \end{array} \right) \left( \frac{e}{2} \right) ^s (f-M) \delta _{l,0}\delta _{s+j,2q} \end{aligned}$$
(39c)

Note, that there are poles in the denominator for certain combinations of indices. For the short-periodic solutions these correspond to long-periodic terms and for the long-periodic solutions they correspond to secular drifts, i.e. they have to be excluded from the sums.

1.1 Semi-major axis a

$$\begin{aligned} (\Delta a)_\text {SP}&= \frac{\mu }{c^2}\left( \frac{R}{a}\right) ^k\frac{J_k}{\eta ^{2k+4}}\cdot \Bigg [\sum _{m=0}^ke\cdot F_{k,0,m}(I)\nonumber \\&\quad \times \,\bigg (\left( 14+10k\right) \cdot \Big (\Phi ^*_{1,1,k,k'}-\Phi ^*_{1,-1,k,k'}\Big )\nonumber \\&\quad -3\left( 1+k\right) \eta ^2\cdot \Big (\Phi ^*_{0,1,k,k'}-\Phi ^*_{0,-1,k,k'}\Big )\bigg )\nonumber \\&\quad -2\sin I\sum _{j=0}^{\left[ {\frac{k-1}{2}} \right] }\sum _{m=0}^{k-2j-1}\alpha _{k,j}(-1)^{k}F_{k-2j-1,0,m}(I)\nonumber \\&\quad \times \,\bigg (4\Phi ^*_{3,0,k,k''}+2\Phi ^*_{2,0,k,k''}+\eta ^2\Phi ^*_{1,0,k,k''}\nonumber \\&\quad -e^2\cdot \Big (\Phi ^*_{1,2,k,k''}-2\Phi ^*_{1,0,k,k''}+\Phi ^*_{1,-2,k,k''}\Big )\bigg )\Bigg ]~, \end{aligned}$$
(40)
$$\begin{aligned} (\Delta a)_{\text {LP}}&= J_k\frac{\mu }{c^2}\left( \frac{R}{a}\right) ^k\frac{2n}{\eta }\cdot \Bigg [\sum _{m=0}^ke\cdot \frac{F_{k,0,m}(I)}{k'\dot{\omega }}\cdot \left[ \begin{array}{c} \cos \\ \sin \end{array}\right] ^\text { k even}_\text { k odd}\left( k'\omega \right) \nonumber \\&\quad \times \,\bigg (\left( 14+10k\right) \cdot X_0^{-k-3,k'+1}-3\left( 1+k\right) \cdot X_0^{-k-2,k'+1}\bigg )\nonumber \\&\quad -(-1)^{k}\sin I\sum _{j=0}^{\left[ {\frac{k-1}{2}} \right] }\sum _{m=0}^{k-2j-1}\alpha _{k,j}\frac{F_{k-2j-1,0,m}(I)}{k''\dot{\omega }}\cdot \left[ \begin{array}{c} \cos \\ \sin \end{array}\right] ^\text { k even}_\text { k odd}\left( k''\omega \right) \nonumber \\&\quad \times \,\bigg (4\eta ^4X_0^{-k-5,k''}+2\eta ^2X_0^{-k-4,k''}+\eta ^2X_0^{-k-3,k''}\nonumber \\&\quad - e^2\bigg [X_0^{-k-3,k''+2}-2X_0^{-k-3,k''}+X_0^{-k-3,k''-2}\bigg ]\bigg )\Bigg ]~,\nonumber \\ \end{aligned}$$
(41)

where \(k' = k-2m\text { and }k'' = k-2j-2m~\).

1.2 Eccentricity e

$$\begin{aligned} \left( \Delta e\right) _\text {SP}&= \frac{\mu }{c^2a}\left( \frac{R}{a}\right) ^k \frac{J_k}{\eta ^{2k+2}}\cdot \Bigg [\sum _{m=0}^k F_{k,0,m}(I)\nonumber \\&\quad \times \,\bigg (\left( 7 + 5k\right) \cdot \Big (\Phi ^*_{1,1,k,k'}-\Phi ^*_{1,-1,k,k'}\Big )-\frac{3}{2}\left( 1+k\right) \eta ^2\cdot \Big (\Phi ^*_{0,1,k,k'}-\Phi ^*_{0,-1,k,k'}\Big )\nonumber \\&\quad -2\left( 1+k\right) \cdot \Big (\Phi ^*_{2,1,k,k'}-\Phi ^*_{2,-1,k,k'}\Big )+2e^2(1+k)\cdot \Big (\Phi ^*_{0,1,k,k'}-\Phi ^*_{0,-1,k,k'}\Big )\nonumber \\&\quad +e\left( 1+k\right) \cdot \Big (\Phi ^*_{1,2,k,k'}-\Phi ^*_{1,-2,k,k'}+\Phi ^*_{0,2,k,k'}-\Phi ^*_{0,-2,k,k'}\Big )\bigg )\nonumber \\&\quad -\sum _{j=0}^{\left[ {\frac{k-1}{2}} \right] }\sum _{m=0}^{k-2j-1}(-1)^{k}\alpha _{k,j}\cdot \sin I\cdot F_{k-2j-1,0,m}(I) \nonumber \\&\quad \times \,\bigg (\frac{\eta ^2}{2}\cdot \Big (\Phi ^*_{-1,1,k,k''}+\Phi ^*_{-1,-1,k,k''}\Big )+\left( 1+\frac{\eta ^2}{2}\right) \Big (\Phi ^*_{0,1,k,k''}+\Phi ^*_{0,-1,k,k''}\Big )\nonumber \\&\quad -e\cdot \Big (\Phi ^*_{1,2,k,k''} - 2\Phi ^*_{1,0,k,k''} + \Phi ^*_{1,-2,k,k''}\Big )\nonumber \\&\quad +3\cdot \Big (\Phi ^*_{1,1,k,k''} + \Phi ^*_{1,-1,k,k''}\Big )+2\cdot \Big (\Phi ^*_{2,1,k,k''} + \Phi ^*_{2,-1,k,k''}\Big )\nonumber \\&\quad +e\cdot \Big (\eta ^2\Phi ^*_{-1,0,k,k''} + 2\Phi ^*_{0,0,k,k''} + 4\Phi ^*_{1,0,k,k''}\Big )\bigg )\Bigg ]~, \end{aligned}$$
(42)
$$\begin{aligned} (\Delta e)_\text {LP}&= \frac{\mu ^2}{c^2a}\left( \frac{R}{a}\right) ^k J_k \eta \cdot n\cdot \Bigg [\sum _{m=0}^k \frac{F_{k,0,m}(I)}{k'\dot{\omega }}\cdot \left[ \begin{array}{c} \cos \\ \sin \end{array}\right] ^\text { k even}_\text { k odd}\left( k'\omega \right) \nonumber \\&\quad \times \,\bigg (\left( 14 + 10k\right) X_0^{-k-3,k'+1}-3\left( 1+k\right) X_0^{-k-2,k'+1}-4\eta ^2\left( 1+k\right) X_0^{-k-4,k'+1}\nonumber \\&\quad +2e\left( 1+k\right) \Big [X_0^{-k-3,k'+2}+\frac{1}{\eta ^2}X_0^{-k-2,k'+2}\Big ]+\frac{4e^2}{\eta ^2}(1+k)X_0^{-k-2,k'+1}\bigg )\nonumber \\&\quad -(-1)^k\sum _{j=0}^{\left[ {\frac{k-1}{2}} \right] }\sum _{m=0}^{k-2j-1}\alpha _{k,j}\cdot \sin I\cdot \frac{F_{k-2j-1,0,m}(I)}{k''\dot{\omega }}\cdot \left[ \begin{array}{c} \cos \\ \sin \end{array}\right] ^\text { k even}_\text { k odd}\left( k''\omega \right) \nonumber \\&\quad \times \,\bigg (\frac{1}{2\eta ^2}\cdot \left[ X_0^{-k-1,k''+1}+X_0^{-k-1,k''-1}\right] \nonumber \\&\quad +\left( \frac{1}{2}+\frac{1}{\eta ^2}\right) \cdot \left[ X_0^{-k-2,k''+1}+X_0^{-k-2,k''-1}\right] \nonumber \\&\quad -e\cdot \left[ X_0^{-k-3,k''+2}-2X_0^{-k-3,k''}+X_0^{-k-3,k''-2}\right] \nonumber \\&\quad +3\cdot \left[ X_0^{-k-3,k''+1}+X_0^{-k-3,k''-1}\right] +2\eta ^2\cdot \left[ X_0^{-k-4,k''+1}+X_0^{-k-4,k''-1}\right] \nonumber \\&\quad +\frac{e}{\eta ^2}\cdot \left[ X_0^{-k-1,k''}+2X_0^{-k-2,k''}+4\eta ^2X_0^{-k-3,k''}\right] \bigg )\Bigg ]~,\nonumber \\ \text {where } k'&= k-2m \text { and } k'' = k-2j-2m~. \end{aligned}$$
(43)

1.3 Inclination I

$$\begin{aligned} (\Delta I)_\text {SP}&= -\frac{\mu }{c^2a}J_k\left( \frac{R}{a}\right) ^k\frac{\cos I}{\eta ^{2k}}\sum _{j = 0}^{\left[ {\frac{k-1}{2}} \right] }\sum _{m=0}^{k-2j-1}(-1)^{k}\alpha _{k,j}F_{k-2j-1,0,m}(I)\nonumber \\&\quad \times \,\Bigg (\frac{2}{\eta ^2}\Phi ^*_{0,0,k,k''}+\Phi ^*_{-1,0,k,k''}\Bigg )~, \end{aligned}$$
(44)
$$\begin{aligned} (\Delta I)_\text {LP}&= -\frac{\mu }{c^2a}J_k\left( \frac{R}{a}\right) ^k\frac{n\cos I}{\eta }\sum _{j = 0}^{\left[ {\frac{k-1}{2}} \right] }\sum _{m=0}^{k-2j-1}(-1)^{k}\alpha _{k,j}\frac{F_{k-2j-1,0,m}(I)}{k''\dot{\omega }}\nonumber \\&\quad \times \,\left[ \begin{array}{c} \cos \\ \sin \end{array}\right] ^\text { k even}_\text { k odd}\left( k''\omega \right) \cdot \left( 2X_0^{-k-2,k''} + X_0^{-k-1,k''}\right) ~,\nonumber \\ \text {where } k''&= k-2j-2m~. \end{aligned}$$
(45)

1.4 Argument of periapsis \(\omega \)

We give the results for \(\omega ' = \omega + \Omega \cos I\). As mentioned above, one has to pay attention to \(\omega \), if one considers only odd multipoles, in which case the lowest odd multipole will not give rise to long-periodic perturbations.

$$\begin{aligned} (\Delta \omega ')_\text {LP}&= \frac{\mu }{c^2a}J_k\left( \frac{R}{a}\right) ^k\frac{n\eta }{e}\cdot \Bigg [\sum _{m=0}^{k}\cdot (-1)^k\cdot \frac{F_{k,0,m}(I)}{k'\dot{\omega }}\cdot \left[ \begin{array}{c} \cos \\ \sin \end{array}\right] ^\text { k even}_\text { k odd}\left( k'\omega \right) \nonumber \\&\quad \times \,\bigg (\left( 14+10k\right) \cdot X_0^{-k-3,k'+1} -3\left( 1+k\right) \cdot X_0^{-k-2,k'+1} \nonumber \\&\quad -4\eta ^2\left( 1+k\right) \cdot X_0^{-k-4,k'+1}+2e\left( 1+k\right) \cdot \Big [\left( X_0^{-k-3,k'+2} - X_0^{-k-3,k'}\right) \nonumber \\&\quad +\frac{1}{\eta ^2}\left( X_0^{-k-2,k'+2} - X_0^{-k-2,k'}\right) \Big ]\bigg )\nonumber \\&\quad -\sum _{j = 0}^{\left[ {\frac{k-1}{2}} \right] }\sum _{m=0}^{k-2j-1}\alpha _{k,j}\sin I \cdot \frac{F_{k-2j-1,0,m}(I)}{k''\dot{\omega }}\cdot \left[ \begin{array}{c} \cos \\ \sin \end{array}\right] ^\text { k even}_\text { k odd}\left( k''\omega \right) \nonumber \\&\quad \times \,\bigg (\frac{1}{2\eta ^2}\cdot \left[ X_0^{-k-1,k''+1}-X_0^{-k-1,k''-1}\right] \nonumber \\&\quad +\left( \frac{1}{2}+\frac{1}{\eta ^2}\right) \cdot \left[ X_0^{-k-2,k''+1}-X_0^{-k-2,k''-1}\right] \nonumber \\&\quad -e\cdot \left[ X_0^{-k-3,k''+2}-X_0^{-k-3,k''-2}\right] \nonumber \\&\quad +3\cdot \left[ X_0^{-k-3,k''+1}-X_0^{-k-3,k''-1}\right] \nonumber \\&\quad +2\eta ^2\cdot \left[ X_0^{-k-4,k''+1}-X_0^{-k-4,k''-1}\right] \bigg )~. \nonumber \\ \text {where } k'&= k-2m \text { and } k'' = k-2j-2m.\end{aligned}$$
(46)
$$\begin{aligned} \left( \Delta \omega '\right) _\text {SP}&= \frac{\mu }{c^2a}J_k\left( \frac{R}{a}\right) ^k\frac{1}{e\eta ^{2k+2}}\cdot \Bigg [\sum _{m=0}^{k} (-1)^kF_{k,0,m}(I)\nonumber \\&\quad \times \,\bigg (\left( 14+10k\right) \cdot \left( \Phi _{1,1,k,k'} + \Psi _{1,1,k,k'}\right) \nonumber \\&\quad -3\left( 1+k\right) \eta ^2\cdot \left( \Phi _{0,1,k,k'} + \Psi _{0,1,k,k'}\right) \nonumber \\&\quad -4\left( 1+k\right) \cdot \left( \Phi _{2,1,k,k'} + \Psi _{2,1,k,k'}\right) \nonumber \\&\quad +2e\left( 1+k\right) \cdot \Big [\Phi _{1,2,k,k'} - \Phi _{1,0,k,k'} + \Psi _{1,2,k,k'} - \Psi _{1,0,k,k'}\nonumber \\&\quad +\Phi _{0,2,k,k'} - \Phi _{0,0,k,k'} + \Psi _{0,2,k,k'} - \Psi _{0,0,k,k'}\Big ]\bigg )\nonumber \\&\quad -\sum _{j=0}^{\left[ {\frac{k-1}{2}} \right] }\sum _{m=0}^{k-2j-1}\alpha _{k,j}\cdot \sin I\cdot F_{k-2j-1,0,m}(I) \nonumber \\&\quad \times \,\bigg (\frac{\eta ^2}{2}\cdot \Big (\Phi _{-1,1,k,k''}-\Phi _{-1,-1,k,k''})\nonumber \\&\quad +\left( 1+\frac{\eta ^2}{2}\right) \cdot \Big (\Phi _{0,1,k,k''}-\Phi _{0,-1,k,k''})\nonumber \\&\quad -e\cdot \Big (\Phi _{1,2,k,k''}-\Phi _{1,-2,k,k''})\nonumber \\&\quad +3\cdot \Big (\Phi _{1,1,k,k''}-\Phi _{1,-1,k,k''})\nonumber \\&\quad +2\cdot \Big (\Phi _{2,1,k,k''}-\Phi _{2,-1,k,k''})\bigg )\Bigg ]~,\nonumber \\ \text {where } k'&= k-2m\text { and } k'' = k-2j-2m~. \end{aligned}$$
(47)

1.5 Longitude of the ascending node \(\Omega \)

$$\begin{aligned} (\Delta \Omega )_\text {SP}&= -\frac{\mu }{c^2 a}J_k \left( \frac{R}{a}\right) ^k\frac{\cot I}{\eta ^{2k}}\sum _{j = 0}^{\left[ {\frac{k-1}{2}} \right] }\sum _{m=0}^{k-2j-1}\alpha _{k,j}\cdot F_{k-2j-1,0,m}(I)\nonumber \\&\quad \times \,\Big (\Phi _{-1,0,k,k''} + \frac{2}{\eta ^2}\Phi _{0,0,k,k''}+\Psi _{-1,0,k,k''}+\frac{2}{\eta ^2}\Psi _{0,0,k,k''}\Big )~, \end{aligned}$$
(48)
$$\begin{aligned} (\Delta \Omega )_\text {LP}&= -\frac{\mu }{c^2 a}J_k \left( \frac{R}{a}\right) ^k \frac{n\cot I}{\eta }\sum _{j = 0}^{\left[ {\frac{k-1}{2}} \right] }\sum _{m=0}^{k-2j-1}\alpha _{k,j}\cdot \frac{F_{k-2j-1,0,m}(I)}{k''\dot{\omega }}\nonumber \\&\quad \times \,\left[ \begin{array}{c} \cos \\ \sin \end{array}\right] ^\text { k even}_\text { k odd}\left( k''\omega \right) \cdot \left( 2X_0^{-k-2,k''} + X_0^{-k-1,k''}\right) ~,\nonumber \\ \text {where } k''&= k-2j-2m~. \end{aligned}$$
(49)

1.6 Mean anomaly M

We give results for \(M' = M - n\cdot t + \omega \cdot \eta + \Omega \eta \cos I\). For k odd there are no secular perturbations in the mean anomaly.

$$\begin{aligned} \left( \Delta M'\right) _\text {S}&= \left( \frac{\mu }{ac^2}\right) J_k\left( \frac{R}{a}\right) ^k\cdot F_{k,0,k/2}(I)\nonumber \\&\quad \times \,\bigg [\left( 28+20k\right) X_0^{-k-2,0}-6(1+k)X_0^{-k-1,0}-8(1+k)\eta ^2X_0^{-k-3,0}\bigg ]\cdot nt~, \end{aligned}$$
(50)
$$\begin{aligned} \left( \Delta M'\right) _\text {SP}&= \frac{J_k}{\eta ^{2k+1}}\frac{\mu }{ac^2}\left( \frac{R}{a}\right) ^k\cdot \Bigg [\sum _{m=0}^k (-1)^kF_{k,0,m}(I)\cdot \bigg (\left( 28+20k\right) \left( \Phi _{0,0,k,k'}+\Psi _{0,0,k,k'}\right) \nonumber \\&\quad -6\left( 1+k\right) \eta ^2\left( \Phi _{-1,0,k,k'}+\Psi _{-1,0,k,k'}\right) -8\left( 1+k\right) \left( \Phi _{1,0,k,k'}+\Psi _{1,0,k,k'}\right) \bigg )\nonumber \\&\quad +4e\sin I\sum _{j = 0}^{\left[ {\frac{k-1}{2}} \right] }\sum _{m=0}^{k-2j-1}\alpha _{k,j}\cdot F_{k-2j-1,0,m}(I)\cdot \bigg (\Phi _{0,1,k,k''} - \Phi _{0,-1,k,k''}\bigg )\Bigg ]~, \end{aligned}$$
(51)
$$\begin{aligned} \left( \Delta M'\right) _\text {LP}&= \frac{\mu n}{c^2a}J_k\left( \frac{R}{a}\right) ^k\cdot \Bigg [(-1)^k\sum _{m=0}^k \frac{F_{k,0,m}(I)}{k'\dot{\omega }}\cdot \left[ \begin{array}{c} \cos \\ \sin \end{array}\right] ^\text { k even}_\text { k odd}\left( k'\omega \right) \nonumber \\&\quad \times \,\bigg (\left( 28+20k\right) X_0^{-k-2,k'}-6(1+k)X_0^{-k-1,k'}-8(1+k)\eta ^2X_0^{-k-3,k'}\bigg )\nonumber \\&\quad +4e\sin I\sum _{j = 0}^{\left[ {\frac{k-1}{2}} \right] }\sum _{m=0}^{k-2j-1}\alpha _{k,j}\cdot \frac{F_{k-2j-1,0,m}(I)}{k''\dot{\omega }}\cdot \left[ \begin{array}{c} \cos \\ \sin \end{array}\right] ^\text { k even}_\text { k odd}\left( k''\omega \right) \nonumber \\&\quad \times \,\Big (X_0^{-k-2,k''+1}-X_0^{-k-2,k''-1}\Big )\Bigg ]~,\nonumber \\ \text {where } k'&= k-2m \text { and } k'' = k-2j-2m~. \end{aligned}$$
(52)

C. Expressions in the canonical approach

First, we list two remaining expressions from the calculation process in the canonical approach. From these the (quasi-)Newtonian results for arbitrary \(J_k\) can be reproduced. Finally we list the expressions for the second-order drifts in \(h = \Omega \) and \(g = \omega \).

$$\begin{aligned} \mathcal {H}^*_1&= \frac{J_kR^k\mu ^{k+2}}{L'^3G'^{2k-1}}\sum _{m=0}^{\left[ {k/2} \right] }\left( 2-\delta _{k,2m}\right) \cdot b_{k-2m}\cdot \sum _{s=0}^{k-1}\sum _{q=0}^s \left( \frac{e'}{2}\right) ^s\left( {\begin{array}{c}k-1\\ s\end{array}}\right) \left( {\begin{array}{c}s\\ q\end{array}}\right) \nonumber \\&\quad \times \,\delta _{s-2q,k-2m}\cdot \cos \left( (k-2m\right) \cdot (g'-\frac{\pi }{2}))\nonumber \\&\quad -\frac{\mu ^4}{c^2L'^4}\left[ 3\frac{L'}{G'} - \frac{15}{8}\right] \end{aligned}$$
(53)
$$\begin{aligned} W_1&= \frac{J_kR^k\mu ^k}{G'^{2k-1}}\sum _{m=0}^{\left[ {k/2} \right] }\left( 2-\delta _{k,2m}\right) \cdot b_{k-2m}\sum _{s=0}^{k-1}\sum _{q=0}^s \left( \frac{e'}{2}\right) ^s\left( {\begin{array}{c}k-1\\ s\end{array}}\right) \left( {\begin{array}{c}s\\ q\end{array}}\right) \nonumber \\&\quad \times \,\bigg [\delta _{s-2q,k-2m}(f'-l')\cdot \cos \left( (k-2m\right) \cdot (g'-\frac{\pi }{2}))\nonumber \\&\quad +\big (1-\delta _{s-2q,k-2m}\big )\frac{\sin \left( (s-2q+k-2m\right) f'+(k-2m)\cdot (g'-\frac{\pi }{2}))}{s-2q+k-2m}\bigg ]\nonumber \\&\quad -\frac{\mu ^2}{c^2L'}\left[ 3\frac{L'}{G'}(f'-l')-2(E'-l')\right] \end{aligned}$$
(54)

Since the two Lie-transformations contain the short-periodic and long-periodic perturbations only, the secular drifts in \(h = \Omega \) and \(g = \omega \) are given by the drifts in \(h''\) and \(g''\), respectively. For these we find to second order

(55)
(56)

and the derivatives, giving the second-order secular drifts, are

(57)
(58)
(59)
(60)

The dots-term \(\left( \dots \right) \) denotes the respective part in (Eq. 30).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schanner, M., Soffel, M. Relativistic satellite orbits: central body with higher zonal harmonics. Celest Mech Dyn Astr 130, 40 (2018). https://doi.org/10.1007/s10569-018-9836-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-018-9836-6

Navigation