Skip to main content

Advertisement

Log in

Trajectory exploration within asynchronous binary asteroid systems using refined Lagrangian coherent structures

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Ground observations have found that asynchronous systems constitute most of the population of the near-Earth binary asteroids. This paper concerns the trajectory of a particle in the asynchronous system which is systematically described using periodic ellipsoidal and spherical body models. Due to the non-autonomous characteristics of the asynchronous system, Lagrangian coherent structures (LCS) are employed to identify the various dynamical behaviors. To enhance the accuracy of LCS, a robust LCS finding algorithm is developed incorporating hierarchical grid refinement, one-dimensional search and variational theory verification. In this way, the intricate dynamical transport boundaries are detected efficiently. These boundaries indicate that a total of 15 types of trajectories exist near asynchronous binary asteroids. According to their Kepler energy variations, these trajectories can be grouped into four basic categories, i.e., transitory, escape, impact and flyby trajectories. Furthermore, the influence of the ellipsoid’s spin period on the dynamical behavior is discussed in the context of the change of dynamical regions. We found that the transitory and impact motions occur easily in the synchronous-like binary systems, in which the rotation period of the ellipsoid is nearly equal to that of the mutual orbit. Meanwhile, the results confirm a positive correlation between the spinning rate of the ellipsoid and the probability of the escape and flyby trajectories. The LCS also reveal a marked increase in trajectory diversity after a larger initial energy is selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Baoyin, H., McInnes, C.R.: Trajectories to and from the Lagrange points and the primary body surfaces. J. Guid. Control Dyn. 29(4), 998–1003 (2006)

    Article  ADS  Google Scholar 

  • Barden, B., Howell, K.C., Lo, M.: Application of dynamical systems theory to trajectory design for a libration point mission. J. Astronaut. Sci. 45(2), 161–178 (1997)

    MathSciNet  Google Scholar 

  • Bellerose, J.: The restricted full three body problem: applications to binary asteroid exploration. PhD thesis, University of Colorado at Boulder (2008)

  • Bellerose, J., Scheeres, D.J.: Periodic orbits in the restricted full three body problem for an ellipsoid-sphere system. Ann Arbor 1001, 48, 109–2140 (2005)

    MATH  Google Scholar 

  • Blazevski, D., Haller, G.: Hyperbolic and elliptic transport barriers in three-dimensional unsteady flows. Phys. D 273, 46–62 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Brent, R.P.: Algorithms for minimization without derivatives. Math. Comput. 19(5), 390–398 (2012)

  • Chappaz, L., Howell, K.C.: Trajectory exploration within binary systems comprised of small irregular bodies. In: 23rd AAS/AIAA Space Flight Mechanics Meeting, Kauai, Hawaii (2013)

  • Chappaz, L., Howell, K.C.: Exploration of bounded motion near binary systems comprised of small irregular bodies. Celest. Mech. Dyn. Astron. 123(2), 123–149 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • D’Errico (2006) Adaptive Robust Numerical Differentiation. http://www.mathworks.com/matlabcentral/fileexchange/13490-adaptive-robust-numerical-differentiation/content/DERIVESTsuite/hessian.m/

  • Farazmand, M., Haller, G.: Computing Lagrangian coherent structures from their variational theory. Chaos Interdiscip. J. Nonlinear Sci. 22(1), 013,128 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Garth, C., Gerhardt, F., Tricoche, X., Hagen, H.: Efficient computation and visualization of coherent structures in fluid flow applications. IEEE Trans. Vis. Comput. Gr. 13(6), 1464–1471 (2007)

    Article  Google Scholar 

  • Gawlik, E.S., Marsden, J.E., Du Toit, P.C., Campagnola, S.: Lagrangian coherent structures in the planar elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 103(3), 227–249 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gómez, G.: Dynamics and Mission Design Near Libration Points, Vol I: Fundamentals: The Case of Collinear Libration Points, vol. 1. World Scientific, Singapore (2001)

    MATH  Google Scholar 

  • Haller, G.: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Phys. D 149(4), 248–277 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Haller, G.: A variational theory of hyperbolic Lagrangian coherent structures. Phys. D 240(7), 574–598 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Haller, G., Beron-Vera, F.J.: Geodesic theory of transport barriers in two-dimensional flows. Phys. D 241(20), 1680–1702 (2012)

    Article  MATH  Google Scholar 

  • Haller, G., Yuan, G.: Lagrangian coherent structures and mixing in two-dimensional turbulence. Phys. D 147(3), 352–370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • He, J., Tian, C.X.: A statistical smoothness measure to eliminate outliers in motion trajectory tracking. Hum. Mov. Sci. 17(2), 189–200 (1998)

    Article  Google Scholar 

  • Howell, K.C., Marchand, B., Lo, M.: Temporary satellite capture of short-period jupiter family comets from the perspective of dynamical systems. J. Astronaut. Sci. 49(4), 539–558 (2001)

    MathSciNet  Google Scholar 

  • Jacobson, S., Scheeres, D.J.: Formation of the asynchronous binary asteroids. In: Lunar and Planetary Science Conference, 43:2737 (2012)

  • Lipinski, D., Mohseni, K.: A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures. Chaos Interdiscip. J. Nonlinear Sci. 20(1), 017,504 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Margot, J.L., Nolan, M., Benner, L., Ostro, S., Jurgens, R., Giorgini, J., et al.: Binary asteroids in the near-earth object population. Science 296(5572), 1445–1448 (2002)

    Article  ADS  Google Scholar 

  • Merline, W.J., Weidenschilling, S.J., Durda, D.D., Margot, J.L., Pravec, P., Storrs, A.D.: Asteroids do have satellites. Asteroids III(1), 289–312 (2002)

    ADS  Google Scholar 

  • Neutsch, W.: On the gravitational energy of ellipsoidal bodies and some related functions. Astron. Astrophys. 72, 339–347 (1979)

    ADS  MATH  Google Scholar 

  • Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1–2), 99–120 (2004)

    Article  MathSciNet  Google Scholar 

  • Noll, K.S., Grundy, W.M., Stephens, D.C., Levison, H.F., Kern, S.D.: Evidence for two populations of classical transneptunian objects: the strong inclination dependence of classical binaries. Icarus 194(2), 758–768 (2008)

    Article  ADS  Google Scholar 

  • Oshima, K., Yanao, T.: Applications of gravity assists in the bicircular and bielliptic restricted four-body problem. Adv. Astronaut. Sci. 152, 503–522 (2014)

    Google Scholar 

  • Pérez, D., Gómez, G., Masdemont, J.J.: Detecting invariant manifolds using hyperbolic Lagrangian coherent structures. Adv. Astronaut. Sci. 145, 867–879 (2012)

    Google Scholar 

  • Pérez, D., Masdemont, J.J., Gómez, G.: Tools to detect structures in dynamical systems using jet transport. Celest. Mech. Dyn. Astron. 123(3), 239–262 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Pravec, P., Scheirich, P.: Binary system candidates for detection of byorp. Bull. Am. Astron. Soc. 42, 1055 (2010)

    ADS  Google Scholar 

  • Qi, R., Xu, S.J.: Applications of Lagrangian coherent structures to expression of invariant manifolds in astrodynamics. Astrophys. Space Sci. 351(1), 125–133 (2014)

    Article  ADS  Google Scholar 

  • Ren, Y., Shan, J.: Numerical study of the three-dimensional transit orbits in the circular restricted three-body problem. Celest. Mech. Dyn. Astron. 114(4), 415–428 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Ren, Y., Shan, J.: Low-energy lunar transfers using spatial transit orbits. Commun. Nonlinear Sci. Numer. Simul. 19(3), 554–569 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • Roca, X.R.: Computation of Lagrangian coherent structures with application to weak stability boundaries. Master’s thesis, Universitat Politécnica de Catalunya (2015)

  • Scheeres, D.J., Augenstein, S.: Spacecraft motion about binary asteroids. Adv. Astronaut. Sci. 116, 1–20 (2004)

    Google Scholar 

  • Shadden, S.C., Lekien, F., Marsden, J.E.: Definition and properties of lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys. D 212(3), 271–304 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Shang, H., Wu, X., Cui, P.: Periodic orbits in the doubly synchronous binary asteroid systems and their applications in space missions. Astrophys. Space Sci. 355(1), 69–87 (2015)

    Article  ADS  Google Scholar 

  • Short, C.R.: Flow-informed strategies for trajectory design and analysis. PhD thesis, Purdue University (2016)

  • Short, C.R., Howell, K.C.: Lagrangian coherent structures in various map representations for application to multi–body gravitational regimes. In: Proceedings of the 62th International Astronautical Congress, Italy (2012)

  • Short, C.R., Howell, K.C.: Lagrangian coherent structures in various map representations for application to multi-body gravitational regimes. Acta Astronaut. 94(2), 592–607 (2014)

    Article  ADS  Google Scholar 

  • Short, C.R., Blazevski, D., Howell, K.C., Haller, G.: Flow control segment and lagrangian coherent structure approaches for application in multi-body problems. In: AAS/AIAA Space Flight Mechanics Meeting, AAS, pp. 14–235 (2014)

  • Short, C.R., Blazevski, D., Howell, K.C., Haller, G.: Stretching in phase space and applications in general nonautonomous multi-body problems. Celest. Mech. Dyn. Astron. 122(3), 213–238 (2015a)

  • Short, C.R., Howell, K.C., Haapala, A., Dichmann, D.: Mode analysis for long-term behavior in a resonant Earth-Moon trajectory. In: AAS/AIAA Astrodynamics Specialist Conference, Vail, Colorado (2015b)

  • Tardivel, S., Scheeres, D.J.: Ballistic deployment of science packages on binary asteroids. J. Guid. Control Dyn. 36(3), 700–709 (2013)

    Article  ADS  Google Scholar 

  • Tardivel, S., Michel, P., Scheeres, D.J.: Deployment of a lander on the binary asteroid (175706) 1996 FG3, potential target of the european marcopolo-r sample return mission. Acta Astronaut. 89, 60–70 (2013)

    Article  ADS  Google Scholar 

  • Veverka, J., Helfenstein, P., Lee, P., Thomas, P., McEwen, A., Belton, M., et al.: Ida and Dactyl: spectral reflectance and color variations. Icarus 120(1), 66–76 (1996)

    Article  ADS  Google Scholar 

  • Walsh, K.J., Richardson, D.C., Michel, P.: Rotational breakup as the origin of small binary asteroids. Nature 454(7201), 188–191 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (“973” Program) (Grant No. 2012CB720000), The National Natural Science Foundation of China (Grant No. 11102021). Especially, Our deepest gratitude goes to reviewers’ careful works and thoughtful suggestions for improving the readability of our paper word for word, which improves this paper substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibin Shang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, H., Wu, X. & Cui, P. Trajectory exploration within asynchronous binary asteroid systems using refined Lagrangian coherent structures. Celest Mech Dyn Astr 127, 185–210 (2017). https://doi.org/10.1007/s10569-016-9723-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-016-9723-y

Keywords

Navigation