Skip to main content
Log in

A general method for the generation and extension of collinear libration point orbits

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper is devoted to the study on applying numerical techniques to accurately compute and robustly extend the libration point orbits (LPOs). A new methodology is proposed exploiting the hyperbolic dynamics of the collinear libration points. Numerical tools are developed to facilitate the efficient computation process, which are applicable to realistic force models and inherently parallelizable. Extensive numerical explorations in the Earth–Moon system are carried out, revealing the delicate structures of nested island chains and bounded chaotic motions on the center manifold. Numerical results confirm that the proposed approach can handle the computations of various types of LPOs in a unified manner and is operational over a wide range of energy levels. LPOs obtained with this approach offer a broad range of future mission possibilities in an extended vicinity of the collinear libration points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  • Astakhov, S.A., Burbanks, A.D., Wiggins, S., Farrelly, D.: Chaos-assisted capture of irregular moons. Nature 423(6937), 264–267 (2003)

    Article  ADS  Google Scholar 

  • Barden, B.T., Howell, K.C.: Formation flying in the vicinity of libration point orbits. Adv. Astronaut. Sci. 99(z), 969–988 (1998)

    Google Scholar 

  • Barden, B.T., Howell, K.C.: Dynamical Issues Associated with Relative Configurations of Multiple Spacecraft Near the Sun-Earth/Moon L1 Point. In AAS/AIAA Astrodynamics Specialists Conference, Paper No. AAS99-450, 2307–2325 (1999)

  • Breakwell, J.V., Brown, J.V.: The Halo family of three dimensional periodic orbits in the earth-moon restricted three body problem. Celest. Mech. 20(4), 389–404 (1979)

    Article  ADS  MATH  Google Scholar 

  • Brent, R.P.: Algorithms for Minimization without Derivatives, Chapter 4. Prentice-Hall, Englewood Cliffs, NJ (1973)

  • Doedel, E.J., Romanov, V.A., Paffenroth, R.C., Keller, H.B., Dichmann, D.J., Gal’an-Vioque, J., Vanderbauwhede, A.: Elemental periodic orbits associated with the libration points in the circular restricted 3-body problem. Int. J. Bifurcat. Chaos 17(08), 2625–2677 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Farquhar, R.W.: Lunar communications with libration-point satellites. J. Spacecr. Rockets 4(10), 1383–1384 (1967)

    Article  ADS  Google Scholar 

  • Farquhar, R.W., Kamel, A.A.: Quasi-periodic orbits about the translunar libration point. Celest. Mech. 7(4), 458–473 (1973)

    Article  ADS  MATH  Google Scholar 

  • Gómez, G., Mondelo, J.M.: The dynamics around the collinear equilibrium points of the RTBP. Physica D 157(4), 283–321 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gómez, G., Masdemont, J.J., Simó, C.: Quasihalo orbits associated with libration points. J. Astronaut. Sci. 46(2), 135–176 (1998)

    MathSciNet  Google Scholar 

  • Gómez, G., Jorba, À., Masdemont, J., Simó, C.: Dynamics and Mission Design Near Libration Point Orbits, Vol. 3: Advanced Methods for Collinear Points. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  • Gómez, G., Jorba, A., Simó, C., Masdemont, J.J.: Dynamics and Mission Design Near Libration Points–Volume III: Advanced Method for Collinear Points, vol. 4. World Scientific, Singapore (2001a)

  • Gómez, G., Llibre, J., Matinez, R., Simó, C.: Dynamics and Mission Design Near Libration Point Orbits — Volume I: Fundamentals: The Case of Collinear Libration Points, vol. 2. World Scientific, Singapore (2001b)

  • Gómez, G., Koon, W.S., Lo, M.W., et al.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17(5), 1571 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hechler, M., Cobos, J., d’Aiguablava, P.: Herschel, Planck and Gaia orbit design. In: International Conference on Library Point Orbits and Applications, 115–135. Girona, Spain (2002)

  • Hénon, M.: Vertical stability of periodic orbits in the restricted problem. I. Equal masses. Astron. Astrophys. 28, 415 (1973)

    ADS  MATH  Google Scholar 

  • Hénon, M.: Generating Families in the Restricted Three-Body Problem. Lecture Notes in Physics Monographs, M52. Springer (1997)

  • Hénon, M.: Generating Families in the Restricted Three-Body Problem. II Quantitative Study of Bifurcations. Lecture Notes in Physics Monographs, M65. Springer (2001)

  • Howell, K.C.: Three-dimensional, periodic, Halo orbits. Celest. Mech. 32(1), 53–71 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Howell, K.C., Pernicka, H.J.: Numerical determination of Lissajous trajectories in the restricted three-body problem. Celest. Mech. 41(1–4), 107–124 (1987)

    Article  ADS  MATH  Google Scholar 

  • Howell, K.C., Marchand, B.G., Lo, M.W.: Temporary satellite capture of short-period Jupiter family comets from the perspective of dynamical systems. J. Astronaut. Sci. 49(4), 539–557 (2001)

    MathSciNet  Google Scholar 

  • Jorba, A., Masdemont, J.J.: Dynamics in the center manifold of the restricted three-body problem. Physica D 132, 189–213 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Jorba, A., Villanueva, J.: Numerical computation of normal forms around some periodic orbits of the restricted three-body problem. Physica D 114(3), 197–229 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kolemen, E., Kasdin, N.J., Gurfil, P.: Multiple Poincar’e sections method for finding the quasiperiodic orbits of the restricted three body problem. Celest. Mech. Dyn. Astron. 112(1), 47–74 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Heteroclinc connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10, 427–469 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Koon, W.S., et al.: Dynamical systems, the three-body problem and space mission design. 9 (2008). Accessed 21

  • Nacozy, P.E.: The use of integrals in numerical integrations of the N-body problem. Astrophys. Space Sci. 14(1), 40–51 (1971)

    Article  ADS  Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A., et al.: Numerical recipes: the art of scientific computing. Cambridge University Press, New York (1986)

    MATH  Google Scholar 

  • Ren, Y., Shan, J.: A novel algorithm for generating libration point orbits about the collinear points. Celest. Mech. Dyn. Astron. 120(1), 57–75 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • Richardson, D.L.: Analytic construction of periodic orbits about the collinear points. Celest. Mech. 22(3), 241–253 (1980a)

  • Richardson, D.L.: Halo orbit formulation for the ISEE-3 mission. J. Guid. Control. Dyn. 3(6), 543–548 (1980b)

  • Stiefel, E.L., Scheifele, G.: Linear and regular celestial mechanics. Perturbed two-body motion. Numerical methods. Canonical theory. Translated from the English edition. Moskva: Nauka, 303 (1975)

  • Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967)

    MATH  Google Scholar 

  • Szebehely, V., Bettis, D.G.: Recent developments of integrating the gravitational problem of N-bodies. Astrophys. Space Sci. 13(2), 365–376 (1971)

    Article  ADS  MATH  Google Scholar 

  • Villac, B.F., Scheeres, D.J.: A simple algorithm to compute hyperbolic invariant manifolds near L1 and L2. AAS/AIAA Spaceflight Mechanics Meeting, Maui, Hawaii, Paper AAS (2004)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11403013), the Fundamental Research Funds for the Central Universities (No. 56XAA14093, 56YAH12036) and Postdoctoral Foundation of Jiangsu Province (No. 1301029B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Li, S. A general method for the generation and extension of collinear libration point orbits. Celest Mech Dyn Astr 126, 339–367 (2016). https://doi.org/10.1007/s10569-016-9698-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-016-9698-8

Keywords

Navigation