Skip to main content
Log in

On the use of the autonomous Birkhoff equations in Lie series perturbation theory

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In this article, we present the Lie transformation algorithm for autonomous Birkhoff systems. Here, we are referring to Hamiltonian systems that obey a symplectic structure of the general form. The Birkhoff equations are derived from the linear first-order Pfaff–Birkhoff variational principle, which is more general than the Hamilton principle. The use of 1-form in formulating the equations of motion in dynamics makes the Birkhoff method more universal and flexible. Birkhoff’s equations have a tensorial character, so their form is independent of the coordinate system used. Two examples of normalization in the restricted three-body problem are given to illustrate the application of the algorithm in perturbation theory. The efficiency of this algorithm for problems of asymptotic integration in dynamics is discussed for the case where there is a need to use non-canonical variables in phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, R., Marsden, J.E.: Foundations of Mechanics. Addison-Wesley, Reading (1978)

    MATH  Google Scholar 

  • Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

    Book  Google Scholar 

  • Birkhoff, G.D.: Dynamical Systems. American Mathematical Society, Providence (1927)

    Book  MATH  Google Scholar 

  • Blimovitch, A.: Uber die anwendungen der Pfaffschen method in der storungs theorie. Astron. Nachr. 273, 161–178 (1942)

    Article  ADS  Google Scholar 

  • Boronenko, T.S.: Closed form representation of short-period perturbations in the motion of the planets outer satellite. Russ. Phys. J. 8(2), 47–54 (2010)

    Google Scholar 

  • Boronenko, T.S., Shmidt, J.B.: Analytical theory of motion of phoebe, the ninth satellite of saturn. Celest. Mech. Dyn. Astron. 48, 289–298 (1990)

    Article  ADS  Google Scholar 

  • Broucke, R.: On Pfaffs equations of motion in dynamic; applications to satellite theory. Celest. Mech. Dyn. Astron. 18, 207–222 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Brouwer, D., Clemence, G.M.: Methods of Celestial Mechanics. Academic Press, New York (1961)

    MATH  Google Scholar 

  • Brumberg, V.A.: Analytical Techniques of Celestial Mechanics. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  • Deprit, A.: Canonical transformations depending on a small parameter. Celest. Mech. 1, 12–30 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Deprit, A., Henrard, J., Rom, A.: Analytic lunar ephemeris. I. Definition of the main problem. Astron. Astrophys. 10, 257–269 (1971)

    ADS  MATH  Google Scholar 

  • Ferraz-Mello, S.: Canonical Perturbation Theories. Degenerate Systems and Resonance. Springer, New York (2007)

    Book  MATH  Google Scholar 

  • Hori, G.: A new approach to the solution of the main problem of the Lunar theory. Astron. J. 68, 125–146 (1963)

    Article  ADS  Google Scholar 

  • Hori, G.: Theory of general perturbations with unspecified canonical variables. J. Jpn. Astron. Soc. 18, 287–296 (1966)

    ADS  Google Scholar 

  • Kholshevnikov, K.V.: Lie transformations in celestial mechanics. Astron Geod 4, 21–45 (1973)

    MathSciNet  Google Scholar 

  • Kholshevnikov, K.V.: Asymptotic Methods of Celestial Mechanics. Leningrad University, Leningrad (1985)

    MATH  Google Scholar 

  • Nayfeh, A.H.: Perturbation Methods. Wiley Classics Library, West Ryde (2000)

    Book  MATH  Google Scholar 

  • Pfaff, J.F.: Algemeine Methode partielle Differentialgleichungen zu integriren. Abhandl. Akad. der Wiss, Berlin (1815)

    Google Scholar 

  • Santilli, R.M.: Foundations of Theoretical Mechanics II. Springer, New York (1983)

    Book  MATH  Google Scholar 

  • Smart, W.M.: Celestial Mechanics. Wiley, New York (1961)

    MATH  Google Scholar 

  • Sun, Y., Shang, Z.J.: Structure-preserving algorithms for Birkhoffian systems. Phys. Lett. A 336, 368–369 (2005)

    Article  ADS  MATH  Google Scholar 

  • Xing-wu, Z., Ji-ke, W., Hai-ping, Z., Ke-fu, H.: Generalized canonical transformation and symplectic algorithm of the autonomous Birkhoffian systems. Appl. Math. Mech. 23, 1029–1034 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author expresses sincere gratitude to the head of the Department of Theoretical Physics, Tomsk State Pedagogical University, Professor I. L. Buchbinder, for consultations and discussions, and Professor of Theoretical Physics V. Ya. Epp, for his suggestions that helped to improve the presentation of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Boronenko.

Appendix: The expression for the averaged Birkhoffian (the first example)

Appendix: The expression for the averaged Birkhoffian (the first example)

The resulting averaged Birkhoffian is represented as follows:

$$\begin{aligned} B^*=B_{00}^*+B_{01}^*+B_{02}^*+B_{03}^*+B_{04}^*+B_{05}^*,\quad B_{00}^*=B_{00},\quad B_{01}^*= B_{01}, \end{aligned}$$

where

$$\begin{aligned} B_{02}^*= & {} \frac{1}{16}\nu ^2 a^2 (((2+3 e^2)(1-3 \gamma ^2+3(-1+\gamma ^2)\cos (2 h))\\&-15 e^2 \cos (2 g)(1-\gamma ^2+(1+\gamma ^2) \cos (2 h)+30 e^2\gamma \sin (2 g) \sin (2 h)),\\ B_{03}^*= & {} 0,\\ B_{04}^*= & {} \frac{1}{4096}\frac{\nu ^4 a^2}{n^2}(8(47+282 \gamma ^2 +63\gamma ^4)+63 e^4 (239+170\gamma ^2+143 \gamma ^4)\\&-\,72 e^2 (377{+}190\gamma ^2{+}209 \gamma ^4)+2592 \cos (2 h) {+}168 \cos (4 h){-}24 e^2 \cos (2 g) (1{-}\gamma ^2\\&+\,(1+\gamma ^2) \cos (2 h)(27(2+e^2){+}5(78{-}37 e^2)\gamma ^2{+}5({-}78{+}37 e^2)({-}1 {+}\gamma ^2) \cos (2 h)\\&-\,410 e^2\gamma \sin (2 g)\sin (2 h)+3((56\gamma ^2({-}2 {+}\gamma ^2){-}1672 e^2 ({-}1{+}\gamma ^2)^2 \\&+\,1001 e^4(-1 {+}\gamma ^2))\cos (4 h){+}205 e^4 \cos (4 g) (-3(-1 {+}\gamma ^2)^2+4({-}1{+}\gamma ^4)\cos (2 h)\\&-\,(1+6\gamma ^2+\gamma ^4)\cos (4 h))+16 e^2\gamma (27(2+e^2)\\&+\, 5(78-37 e^2)\gamma ^2)\sin (2 g)\sin (2 h)+4\cos (2 h)(-8\gamma ^2(20+7\gamma ^2)\\&+\,152 e^2(-13+2\gamma ^2+11\gamma ^4)-7 e^4(-199+56\gamma ^2+143\gamma ^4)\\&+\, 20 e^2({-}78{+}37 e^2)\gamma ({-}1{+}\gamma ^2)\sin (2g)\sin (2h))),\\ B_{05}^*= & {} \frac{1}{128}\frac{\nu ^4 a^2}{n^2}m\,\eta (\gamma (176-2775 e^2+870 e^4 +(212-1895 e^2+675 e^4)\gamma ^2\\&-\,(212-1895 e^2+675 e^4)(-1+\gamma ^2)\cos (2 h)+4 e^2(-101 +17e^2)\gamma \cos (2 g)(3\\&-\,3\gamma ^2+(-1+3\gamma ^2)\cos (2 h))-8e^2(-101+17 e^2)(-1 +2 \gamma ^2)\sin (2 g) \sin (2 h)). \end{aligned}$$

The above expressions were checked by comparison with the results of Hori (1963), under the condition \(\gamma =1\) and \(h=0\). Complete coincidence was found with the analytical expressions for the functions \(B_{02}^*\), \(B_{03}^*\), \(B_{04}^*\). For the function \(B_{05}^*\), only the secular part coincided. This discrepancy can be explained by the use of different methods (Lie transformations and von Zeipel method) in solving the problem.

Note Expressions for the \(B_{0i}\) functions in the traditional form adopted by the perturbation theory can be obtained in the Mathematica package using the function \(Expand[TrigReduce[B_{0i}]]\). Examples of these expressions for the planar version of the problem can be found in Sect. 3.1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boronenko, T.S. On the use of the autonomous Birkhoff equations in Lie series perturbation theory. Celest Mech Dyn Astr 127, 139–161 (2017). https://doi.org/10.1007/s10569-016-9720-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-016-9720-1

Keywords

Navigation