Long-term dynamics beyond Neptune: secular models to study the regular motions


Two semi-analytical one-degree-of-freedom secular models are presented for the motion of small bodies beyond Neptune. A special attention is given to trajectories entirely exterior to the planetary orbits. The first one is the well-known non-resonant model of Kozai (Astron J 67:591, 1962) adapted to the transneptunian region. Contrary to previous papers, the dynamics is fully characterized with respect to the fixed parameters. A maximum perihelion excursion possible of 16.4 AU is determined. The second model handles the occurrence of a mean-motion resonance with one of the planets. In that case, the one-degree-of-freedom integrable approximation is obtained by postulating the adiabatic invariance, and is much more general and accurate than previous secular models found in the literature. It brings out in a plain way the possibility of perihelion oscillations with a very high amplitude. Such a model could thus be used in future studies to deeper explore that kind of motion. For complex resonant orbits (especially of type 1 : k), a segmented secular description is necessary since the trajectories are only “integrable by parts”. The two models are applied to the Solar System but the notations are kept general so that it could be used for any quasi-circular and coplanar planetary system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17


  1. 1.

    To prevent any confusion in the following, note that the present paper will never deal with the so-called “secular resonances”. What we call here a “resonant secular model” is a secular model that takes into account a mean-motion resonance between the particle and one of the planets.

  2. 2.

    The expansion of Kozai (1962) makes use of the inverse ratio: he was indeed interested of trajectories entirely interior to the orbit of Jupiter.

  3. 3.

    Even if the semi-analytical model is also valid for a perihelion inside the planetary region, we still limit the study to \(q>a_\text {N}\) as this is the region of interest in the scope of this paper. For details about the non-resonant secular dynamics with a perihelion inside the planetary region, see Thomas and Morbidelli (1996) or Gallardo et al. (2012).

  4. 4.

    Note that an analytical search for the two separatrices at \(\omega =\pi /2\) using an expansion of (17) at order 2 of G around the equilibrium does show an asymptotic flat width at about 16.4065975 AU.

  5. 5.

    We recall that the \(\{{\varLambda }_i\}\) momenta were added artificially to the Hamiltonian to absorb its temporal dependence. Given that \({\varGamma }=k_pL+k{\varLambda }_p\), it is not surprising to get an entire liberty concerning its value.

  6. 6.

    That separation prevents probably any occurrence of secondary resonance in our model.

  7. 7.

    In Wisdom (1985), take care that contrary to Henrard (1993) or Milani and Baccili (1998), the “guiding trajectories” refers to the secular time-scale, that is the level curves of \({\mathcal {F}}\) with respect to (Uu).

  8. 8.

    For integrating numerically the semi-secular system, the required partial derivatives of \({\mathcal {K}}\) are obtained by inverting the derivative and integration symbols in the expression of \(\varepsilon \,{\mathcal {K}}_1\). Some nested derivatives can become a bit cumbersome: do not forget, for instance, that the true anomaly is function of e and M, themselves functions of \({\varSigma }\), U, \(\gamma \) and \(\sigma \) via (31).

  9. 9.

    For instance, we found that the resonance 2:11 with Neptune has a double island if \(\eta _0=-0.65\), with \(\omega \sim \pi /2\) and \(\tilde{q}\sim 34\) AU (where we chose \(a_0=93.9872\) AU). However, the required range of parameters is very narrow.

  10. 10.

    The proximity of the resonance still invalidates a fully non-resonant secular model.

  11. 11.

    Note that such a symmetrical trajectory was improbable since at the black point the right island is much larger than the left one. A careful analysis of that orbit shows that \(\sigma \) is temporarily trapped around the saddle point and then swallowed by the growing left island. However, other integrations of the osculating and semi-secular systems show various possible behaviours, including further stay in the right island with a large area, or temporary maintenance of a grazing horseshoe-type orbit (see for instance Fig. 17 just after 1 Gyr: the double peaks in the period are separatrix approaches without crossing).


  1. Batygin, K., Brown, M.E.: Evidence for a distant giant planet in the solar system. Astron. J. 151, 22 (2016)

    ADS  Article  Google Scholar 

  2. Beaugé, C., Roig, F.: A semianalytical model for the motion of the trojan asteroids: proper elements and families. Icarus 153, 391–415 (2001)

    ADS  Article  Google Scholar 

  3. Brasil, P.I.O., Gomes, R.S., Soares, J.S.: Dynamical formation of detached trans-Neptunian objects close to the 2:5 and 1:3 mean motion resonances with Neptune. Astron. Astrophys. 564, 44 (2014)

    ADS  Article  Google Scholar 

  4. Brown, M.E., Trujillo, C., Rabinowitz, D.: Discovery of a candidate inner Oort cloud planetoid. Astrophys. J. 617, 645–649 (2004)

    ADS  Article  Google Scholar 

  5. Fouchard, M., Froeschlé, C., Valsecchi, G., Rickman, H.: Long-term effects of the Galactic tide on cometary dynamics. Celest. Mech. Dyn. Astron. 95, 299–326 (2006)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. Gallardo, T.: Atlas of the mean motion resonances in the solar system. Icarus 184, 29–38 (2006a)

    ADS  Article  Google Scholar 

  7. Gallardo, T.: The occurrence of high-order resonances and Kozai mechanism in the scattered disk. Icarus 181, 205–217 (2006b)

    ADS  Article  Google Scholar 

  8. Gallardo, T., Hugo, G., Pais, P.: Survey of Kozai dynamics beyond Neptune. Icarus 220, 392–403 (2012)

    ADS  Article  Google Scholar 

  9. Gomes, R.S., Gallardo, T., Fernández, J.A., Brunini, A.: On the origin of the high-perihelion scattered disk: the role of the Kozai mechanism and mean motion resonances. Celest. Mech. Dyn. Astron. 91, 109–129 (2005)

    ADS  Article  MATH  Google Scholar 

  10. Gronchi, G.F., Milani, A.: The stable Kozai state for asteroids and comets. With arbitrary semimajor axis and inclination. Astron. Astrophys. 341, 928–935 (1999)

    ADS  Google Scholar 

  11. Henrard, J.: A semi-numerical perturbation method for separable Hamiltonian systems. Celest. Mech. Dyn. Astron. 49, 43–67 (1990)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. Henrard, J.: Dynamics Reported—Expositions in Dynamical Systems, vol. 2. Springer, Berlin (1993)

    Google Scholar 

  13. Kinoshita, H., Nakai, H.: General solution of the Kozai mechanism. Celest. Mech. Dyn. Astron. 98, 67–74 (2007)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. Knezevic, Z., Milani, A., Farinella, P., Froeschle, C., Froeschle, C.: Secular resonances from 2 to 50 AU. Icarus 93, 316–330 (1991)

    ADS  Article  Google Scholar 

  15. Kozai, Y.: Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591 (1962)

    ADS  MathSciNet  Article  Google Scholar 

  16. Kozai, Y.: Secular perturbations of resonant asteroids. Celest. Mech. 36, 47–69 (1985)

    ADS  Article  MATH  Google Scholar 

  17. Laskar, J.: Secular evolution of the solar system over 10 million years. Astron. Astrophys. 198, 341–362 (1988)

    ADS  Google Scholar 

  18. Laskar, J.: The chaotic motion of the solar system—a numerical estimate of the size of the chaotic zones. Icarus 88, 266–291 (1990)

    ADS  Article  Google Scholar 

  19. Lemaître, A.: Resonances: models and captures. In: Souchay, J., Dvorak, R. (eds.) Lecture Notes in Physics, vol. 790, pp. 1–62. Springer, Berlin (2010)

    Google Scholar 

  20. Lemaître, A., Morbidelli, A.: Proper elements for highly inclined asteroidal orbits. Celest. Mech. Dyn. Astron. 60, 29–56 (1994)

    ADS  Article  MATH  Google Scholar 

  21. Lidov, M.L.: The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci. 9, 719–759 (1962)

    ADS  Article  Google Scholar 

  22. Milani, A., Baccili, S.: Dynamics of Earth-crossing asteroids: the protected Toro orbits. Celest. Mech. Dyn. Astron. 71, 35–53 (1998)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. Moons, M., Morbidelli, A.: Secular resonances inside mean-motion commensurabilities: the 4/1, 3/1, 5/2 and 7/3 cases. Icarus 114, 33–50 (1995)

    ADS  Article  Google Scholar 

  24. Moons, M., Morbidelli, A., Migliorini, F.: Dynamical structure of the 2/1 commensurability with Jupiter and the origin of the resonant asteroids. Icarus 135, 458–468 (1998)

    ADS  Article  Google Scholar 

  25. Morbidelli, A.: Asteroid secular resonant proper elements. Icarus 105, 48–66 (1993)

    ADS  Article  Google Scholar 

  26. Morbidelli, A.: Modern celestial mechanics: aspects of solar system dynamics. Taylor & Francis, London (2002)

    Google Scholar 

  27. Morbidelli, A., Levison, H.F.: Scenario for the origin of the orbits of the trans-Neptunian objects 2000 CR\(_{105}\) and 2003 VB\(_{12}\) (Sedna). Astron. J. 128, 2564–2576 (2004)

    ADS  Article  Google Scholar 

  28. Neishtadt, A.: On the change in the adiabatic invariant on crossing a separatrix in systems with two degrees of freedom. J. Appl. Math. Mech. 51, 586–592 (1987)

    MathSciNet  Article  Google Scholar 

  29. Piessens, R., de Doncker-Kapenga, E., Ueberhuber, C.W.: Quadpack. A subroutine package for automatic integration (Springer Series in Computational Mathematics) (1983)

  30. Roig, F., Simula, A., Ferraz-Mello, S., Tsuchida, M.: The high-eccentricity asymmetric expansion of the disturbing function for non-planar resonant problems. Astron. Astrophys. 329, 339–349 (1998)

    ADS  Google Scholar 

  31. Thomas, F., Morbidelli, A.: The Kozai resonance in the outer solar system and the dynamics of long-period comets. Celest. Mech. Dyn. Astron. 64, 209–229 (1996)

    ADS  Article  MATH  Google Scholar 

  32. Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F.: Origin of the orbital architecture of the giant planets of the solar system. Nature 435, 459–461 (2005)

    ADS  Article  Google Scholar 

  33. Wisdom, J.: A perturbative treatment of motion near the 3/1 commensurability. Icarus 63, 272–289 (1985)

    ADS  Article  Google Scholar 

Download references


We thank Giovanni F. Gronchi and Andrea Milani for their precious advice: sometimes, even a few words can be of great help. We thank also two anonymous referees who helped us to improve the paper.

Author information



Corresponding author

Correspondence to Melaine Saillenfest.

Appendix: Expansion of the secular non-resonant Hamiltonian

Appendix: Expansion of the secular non-resonant Hamiltonian

We present here some hints about the construction of the secular analytical non-resonant Hamiltonian function. With the planetary model chosen (Eq. 6), the angle \(\psi _i\) is simply defined by:

$$\begin{aligned} \cos \psi _i =\alpha \cos \lambda _i + \beta \sin \lambda _i \end{aligned}$$


$$\begin{aligned} \left\{ \begin{aligned} \alpha&= \cos (\omega +\nu )\cos {\varOmega }-\sin (\omega +\nu )\sin {\varOmega }\cos I\\ \beta&= \cos (\omega +\nu )\sin {\varOmega }+\sin (\omega +\nu )\cos {\varOmega }\cos I \end{aligned} \right. \end{aligned}$$

Then, the multiple average of \(\varepsilon {\mathcal {H}}_1\) is computed in two steps, beginning with the integration over \(\lambda _1,\lambda _2\ldots \lambda _N\). As the indirect part vanishes, we have, using the Legendre development (9):

$$\begin{aligned} \frac{1}{(2\pi )^N}\int _{0}^{2\pi } \int _{0}^{2\pi } \cdots \int _{0}^{2\pi }\varepsilon {\mathcal {H}}_1\ \ {\mathrm {d}}\lambda _1{\mathrm {d}}\lambda _2\ldots {\mathrm {d}}\lambda _N = -\frac{1}{r}\,\sum _{n=0}^{+\infty }\left( \sum _{i=1}^{N}\mu _i\left( \frac{a_i}{r}\right) ^{2n}\right) P_{2n}(\chi ) \end{aligned}$$

where \(\chi \) is defined as:

$$\begin{aligned} \left\{ \begin{array}{ll} \chi ^0 &{}= 1 \\ \chi ^{2k} &{}= \frac{1\times 3\times 5\times \cdots \times (2k-1)}{2\times 4\times 6\times \cdots \times 2k}(\alpha ^2+\beta ^2)^{k},\quad k = 1,2,3\ldots \end{array} \right. \end{aligned}$$

One can see that the odd terms have disappeared. The average over l is less straightforward, since each polynomial 2n of (58) requires the computation of \(n+1\) integrals of the form:

$$\begin{aligned} \frac{1}{2\pi }\int _{0}^{2\pi }\frac{(\alpha ^2+\beta ^2)^k}{r^{2n+1}}\,{\mathrm {d}}l = \frac{1}{a^2\sqrt{1-e^2}}\ \frac{1}{2\pi }\int _{0}^{2\pi }\frac{(\alpha ^2+\beta ^2)^k}{r^{2n-1}}\,{\mathrm {d}}\nu ,\quad k = 0,1,2\ldots n \end{aligned}$$

where \(\alpha \), \(\beta \) and r are functions of the true anomaly \(\nu \). The general form of the result is presented in Eqs. (12) and (13), and the first terms are the following

\(n = 1\) \(n = 2\) \(n = 3\)
\(\alpha _1 = 1/8\) \(\alpha _2 = 9/1024\) \(\alpha _3 = 25/65536\)
\(P_1^0(x) = 1\) \(P_2^0(x) = 2+3\,x^2\) \(P_3^0(x) = 2\,(8+40\,x^2+15\,x^4)\)
\(Q_1^0(x) = -1+3\,x^2\) \(Q_2^0(x) = 3-30\,x^2+35\,x^4\) \(Q_3^0(x) = -5+105\,x^2-315\,x^4+231\,x^6\)
  \(P_2^1(x) = 10\) \(P_3^1(x) = 210\,(2+x^2)\)
  \(Q_2^1(x) = -1+7\,x^2\) \(Q_3^1(x) = 1-18\,x^2+33\,x^4 \)
   \(P_3^2(x) = 63\)
   \(Q_3^2(x) = -1+11\,x^2\)
\(n = 4\) \( n = 5\)
\( \alpha _4 = 245/33554432\) \(\alpha _5 = 567/4294967296 \)
\(P_4^0(x) = 5\,(16+168\,x^2+210\,x^4+35\,x^6) \) \(P_5^0(x) = 14\,(128+2304\,x^2+6048\,x^4+3360\,x^6+315\,x^8) \)
\(Q_4^0(x) = 35-1260\,x^2+6930\,x^4-12012\,x^6+6435\,x^8 \) \(Q_5^0(x) = -63+3465\,x^2-30030\,x^4+90090\,x^6-109395\,x^8+46189\,x^{10} \)
\(P_4^1(x) = 630\,(48+80\,x^2+15\,x^4)\) \(P_5^1(x) = 9240\,(32+112\,x^2+70\,x^4+7\,x^6) \)
\(Q_4^1(x) = -1+33\,x^2-143\,x^4+143\,x^6 \) \( Q_5^1(x) = 7-364\,x^2+2730\,x^4-6188\,x^6+4199\,x^8 \)
\(P_4^2(x) = 1386\,(10+3\,x^2) \) \( P_5^2(x) = 240240\,(8+8\,x^2+x^4) \)
\(Q_4^2(x) = 1-26\,x^2+65\,x^4\) \( Q_5^2(x) = -1+45\,x^2-255\,x^4+323\,x^6 \)
\(P_4^3(x) = 858\) \( P_5^3(x) = 8580\,(14+3\,x^2) \)
\(Q_4^3(x) = -1+15\,x^2 \) \( Q_5^3(x) = 3-102\,x^2+323\,x^4 \)
  \(P_5^4(x) = 12155 \)
  \(Q_5^4(x) = -1+19\,x^2 \)
\(n = 6\)
\(\alpha _6 = 7623/549755813888 \)
\(P_6^0(x) = 14\,(256+7040\,x^2+31690\,x^4+36960\,x^6+11550\,x^8+693\,x^{10}) \)
\(Q_6^0(x) = 231-18018\,x^2+225225\,x^4-1021020\,x^6+2078505\,x^8-1939938\,x^{10}+676039\,x^{12} \)
\(P_6^1(x) = 60060\,(128+768\,x^2+1008\,x^4+336\,x^2+21\,x^8) \)
\(Q_6^1(x) = -3+225\,x^2-2550\,x^4+9690\,x^6-14535\,x^8+7429\,x^{10} \)
\(P_6^2(x) = 90090\,(80+168\,x^2+70\,x^4+5\,x^6) \)
\(Q_6^2(x) = 5-340\,x^2+3230\,x^4-9044\,x^6+7429\,x^8 \)
\(P_6^3(x) = 12155\,(224+160\,x^2+15\,x^4) \)
\(Q_6^3(x) = -5+285\,x^2-1995\,x^4+3059\,x^6 \)
\(P_6^4(x) = 230945\,(6+x^2) \)
\(Q_6^4(x) = 1-42\,x^2+161\,x^4 \)
\(P_6^5(x) = 29393 \)
\(Q_6^5(x) = -1+23\,x^2\)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saillenfest, M., Fouchard, M., Tommei, G. et al. Long-term dynamics beyond Neptune: secular models to study the regular motions. Celest Mech Dyn Astr 126, 369–403 (2016). https://doi.org/10.1007/s10569-016-9700-5

Download citation


  • Secular model
  • Lidov–Kozai mechanism
  • Mean-motion resonance
  • Transneptunian object (TNO)
  • High-perihelion TNOs
  • Resonant secular model