Skip to main content
Log in

Formation dynamics in geostationary ring

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

A relative motion model for a satellite formation composed of two Earth-orbiting spacecraft located in the geostationary ring is developed taking into account major gravitational and non-gravitational forces. A previously existing model featuring perturbation due to \(J_2\) is enhanced by the perturbations due to solar radiation pressure arising from unequal area-to-mass ratios, as well as the secular and long-periodic gravitational perturbations due to the Sun and the Moon. The extended relative motion model is validated using several typical formation geometries against a reference generated by numerical integration of the absolute orbits of the two spacecraft. The results of this work can find application in future on-orbit servicing and formation flying missions in near-geostationary orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aksnes, K.: Short-period and long-period perturbations of a spherical satellite due to direct solar radiation. Celest. Mech. 13, 89–104 (1976)

    Article  ADS  MATH  Google Scholar 

  • Ardaens, J.-S., D’Amico, S., Fischer, D.: Early flight results from the TanDEM-X autonomous formation flying system. In: 4th International Conference on Spacecraft Formation Flying Missions and Technologies (SFFMT), St-Hubert, Quebec (2011)

  • Ardaens, J.-S., Kahle, R., Schulze, D.: In-flight performance validation of the TanDEM-X autonomous formation flying system. In: 5th International Conference on Spacecraft Formation Flying Missions and Technologies (SFFMT), Munich, Germany (2013)

  • Bryant, R. W.: The effect of solar radiation pressure on the motion of an artificial satellite. NASA Technical Note D-1063 (1961)

  • Caswell, D. et al.: ConeXpress orbital life extension vehicle—a commercial service for communications satellites. ESA Bull. 127, 54–61 (2006)

  • Clohessy, W.H., Wiltshire, R.S.: Terminal guidance system for satellite rendezvous. J. Aerosp. Sci. 27(9), 653–658 (1960)

    Article  MATH  Google Scholar 

  • D’Amico, S.: Autonomous formation flying in low-Earth orbit, PhD Thesis, Technical University of Delft (2010)

  • D’Amico, S., Ardaens, J.-S., Larsson, R.: Spaceborne autonomous formation-flying experiment on the PRISMA mission. J. Guid. Control Dyn. 35(3), 834–850 (2012)

    Article  ADS  Google Scholar 

  • D’Amico, S., Ardaens, J.-S., Gaias, G., Benninghoff, H., Schlepp, B., Jørgensen, J.L.: Noncooperative rendezvous using angles-only optical navigation: system design and flight results. J. Guid. Control Dyn. 36(6), 1576–1595 (2013)

    Article  ADS  Google Scholar 

  • Eckstein, M. C., Rajasingh, C. K., and Blumer, P.: Colocation strategy and collision avoidance for the geostationary satellites at 19 degrees West. In: CNES International Symposium on Space Dynamics (1989)

  • Gaias, G., D’Amico, S., Ardaens, J.-S.: Angles-only navigation to a noncooperative satellite using relative orbital elements. J. Guid. Control Dyn. 37(2), 439–451 (2014)

    Article  ADS  Google Scholar 

  • Gaias, G., Ardaens, J.-S., D’Amico, S.: The autonomous vision approach navigation and target identification (AVANTI) experiment: objectives and design. In: 9th International ESA Conference on Guidance, Navigation & Control Systems, Porto, Portugal (2014)

  • Gaias, G., Ardaens, J.-S., Montenbruck, O.: Model of \(J_2\) perturbed relative motion with time-varying differential drag. Celest. Mech. Dyn. Astron. 123(4), 411–433 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Giacaglia, G.E.O.: Lunar perturbations of artificial satellites of the Earth. Celest. Mech. 9, 239–267 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Härting, A., Rajasingh, C.K., Eckstein, M.C., Leibold, A.F., and Srinivasamurthy, K.N.: On the collision hazard of colocated geostationary satellites. AIAA/AAS Astrodyn. Conf. AIAA Pap., 1988–4239 (1988)

  • Kaiser, C., Sjöberg, F., Delcura, J.M., Eilertsen, B.: SMART-OLEV–an orbital life extension vehicle for servicing commercial spacecrafts in GEO. Acta Astronaut. 63(1–4), 400–410 (2008)

    Article  ADS  Google Scholar 

  • Kaula, W.M.: Development of the lunar and solar disturbing functions for a close satellite. Astronom. J. 67, 300–303 (1962)

  • Kozai, Y.: Effects of solar radiation pressure on the motion of an artificial satellite. Smithson. Contrib. Astrophys. 6, 109 (1963)

    ADS  Google Scholar 

  • Kozai, Y.: A new method to compute lunisolar perturbations in satellite motions. Smithsonian Astrophysical Observatory Special Report 349 (1973)

  • Montenbruck, O., Gill, E.: Satellite Orbits: Models Methods and Applications. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  • Montenbruck, O., Kirschner, M., D’Amico, S., Bettadpur, S.: E/I-vector separation for safe switching of the GRACE formation. Aerosp. Sci. Technol. 10(7), 628–635 (2006)

    Article  MATH  Google Scholar 

  • Prado, A.F.B.A.: Third-body perturbation in orbits around natural satellites. J. Guid. Control Dyn. 26, 33–40 (2003)

    Article  ADS  Google Scholar 

  • Roscoe, C.W.R., Vadali, S.R., Alfriend, K.T.: Third-body perturbation effects on satellite formations. Adv. Astronaut. Sci. 147, 483–502 (2013)

    Google Scholar 

  • Ustinov, B.A.: Motion of satellites along low-eccentricity orbits in a noncentral terrestrial gravitational field. Cosm. Res. 5, 159 (1967)

    ADS  Google Scholar 

  • Wnuk, E., Golebiewska, J.: The relative motion of Earth orbiting satellites. Celest. Mech. Dyn. Astron. 91, 373–389 (2005)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to Dr. R. Kahle for the many helpful discussions, as well as to Dr. G. Gaias for the valuable suggestions that improved the quality of the paper. The author also thanks the anonymous reviewers for the careful reading of the paper and insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofya Spiridonova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 93 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiridonova, S. Formation dynamics in geostationary ring. Celest Mech Dyn Astr 125, 485–500 (2016). https://doi.org/10.1007/s10569-016-9693-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-016-9693-0

Keywords

Navigation