Skip to main content
Log in

Model of \(J_2\) perturbed satellite relative motion with time-varying differential drag

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This work revisits the modeling of the relative motion between satellites flying in near-circular low-Earth-orbits. The motion is described through relative orbital elements and both Earth’s oblateness and differential drag perturbations are addressed. With respect to the former formulation, the description of the \(J_2\) effect is improved by including also the changes that this perturbation produces in both relative mean longitude and relative inclination vector during a drifting phase, when a non-vanishing relative semi-major axis is required. The second major improvement consists in a general empirical formulation to include the mean effects produced by non-conservative perturbations, such as the differential aerodynamic drag acceleration. As a result, in addition to the well-known actions on the relative semi-major axis and on the mean along-track separation, the model is able to reflect the mean variation of the relative eccentricity vector due to atmospheric density oscillations produced by day and night transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The relationship between ROEs and the relative Cartesian state is discussed later in Sect. 4.

References

  • Ardaens, J.-S., D’Amico, S., Fischer, D.: Early flight results from the TanDEM-X autonomous formation flying system. In: 4th International Conference on Spacecraft Formation Flying Missions and Technologies (SFFMT), St-Hubert, Quebec (2011a)

  • Ardaens, J.-S., D’Amico, S., Montenbruck, O.: Final commissioning of the PRISMA GPS navigation system. In: 22nd International Symposium on Spaceflight Dynamics, Sao Jose dos Campos, Brazil (2011b)

  • Ardaens, J.-S., Gaias, G.: Spaceborne autonomous vision-based navigation system for AVANTI. In: 65th International Astronautical Congress, Toronto, Canada (2014)

  • Ardaens, J.-S., Kahle, R., Schulze, D.: In-flight performance validation of the TanDEM-X autonomous formation flying system. In: 5th International Conference on Spacecraft Formation Flying Missions and Technologies (SFFMT), Munich, Germany (2013)

  • Ardaens, J.-S., D’Amico, S.: Spaceborne autonomous relative control system for dual satellite formations. J. Guid. Control Dyn. 32(6), 1859–1870 (2009)

    Article  ADS  Google Scholar 

  • Ben-Yaacov, O., Gurfil, P.: Long-term cluster flight of multiple satellites using differential drag. J. Guid. Control Dyn. 36(6), 1731–1740 (2013). doi:10.2514/1.61496

    Article  ADS  Google Scholar 

  • Bevilacqua, R., Romano, M.: Rendezvous maneuvers of multiple spacecraft using differential drag under J2 perturbation. J. Guid. Control Dyn. 31(6), 1595–1607 (2008)

    Article  ADS  Google Scholar 

  • Bodin, P., Noteborn, R., Larsson, R., Karlsson, T., D’Amico, S., Ardaens, J.-S., et al.: PRISMA formation flying demonstrator: overview and conclusions from the nominal mission. In: 35th Annual AAS Guidance and Control Conference, Number 12-072, Breckenridge, Colorado, USA (2012)

  • Brouwer, D.: Solution of the problem of artificial satellite theory without drag. Astron. J. 64(1274), 378–397 (1959). doi:10.1086/107958

    Article  MathSciNet  ADS  Google Scholar 

  • Clohessy, W.H., Wiltshire, R.S.: Terminal guidance system for satellite rendezvous. J. Aerosp. Sci. 27(9), 653–658 (1960)

    Article  MATH  Google Scholar 

  • Colombo, O.L.: The dynamics of global position system orbits and the determination of precise ephemerides. J. Geophys. Res. 94, 9167–9182 (1989)

    Article  ADS  Google Scholar 

  • D’Amico, S.: Autonomous formation flying in low Earth orbit. Ph.D. thesis, Technical University of Delft, The Netherlands (2010)

  • D’Amico, S.: Relative orbital elements as integration constants of Hill’s equations. DLR-GSOC TN 05-08, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany (2005)

  • D’Amico, S., Ardaens, J.-S., Larsson, R.: Spaceborne autonomous formation-flying experiment on the PRISMA mission. J. Guid. Control Dyn. 35(3), 834–850 (2012). doi:10.2514/1.55638

    Article  ADS  Google Scholar 

  • D’Amico, S., Ardaens, J.-S., Gaias, G., Benninghoff, H., Schlepp, B., Jørgensen, J.L.: Noncooperative rendezvous using angles-only optical navigation: system design and flight results. J. Guid. Control Dyn. 36(6), 1576–1595 (2013). doi:10.2514/1.59236

    Article  ADS  Google Scholar 

  • D’Amico, S., Montenbruck, O.: Proximity operations of formation flying spacecraft using an eccentricity/inclination vector separation. J. Guid. Control Dyn. 29(3), 554–563 (2006). doi:10.2514/1.15114

    Article  ADS  Google Scholar 

  • Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  • Gaias, G., Ardaens, J.-S., D’Amico, S.: The Autonomous Vision Approach Navigation and Target Identification (AVANTI) experiment: objectives and design. In: 9th International ESA Conference on Guidance, Navigation & Control Systems, Porto, Portugal (2014)

  • Gaias, G., D’Amico, S., Ardaens, J.-S.: Generalized multi-impulsive maneuvers for optimum spacecraft rendezvous. In: 5th International Conference on Spacecraft Formation Flying Missions and Technologies (SFFMT), Munich, Germany (2013)

  • Gaias, G., D’Amico, S.: Impulsive maneuvers for formation reconfiguration using relative orbital elements. J. Guid. Control Dyn. (2014). doi:10.2514/1.G000189

  • Härting, A., Rajasingh, C.K., Eckstein, M.C., Leibold, A.F., Srinivasamurthy, K.N.: On the collision hazard of colocated geostationary satellites. In: AIAA/AAS Astrodynamics conference, Number 88-4239, Minneapolis, USA (1988)

  • Ichimura, Y., Ichikawa, A.: Optimal impulsive relative orbit transfer along a circular orbit. J. Guid. Control Dyn. 31(4), 1014–1027 (2008). doi:10.2514/1.32820

    Article  ADS  Google Scholar 

  • Kumar, B.S., Ng, A., Yoshihara, K., De Ruiter, A.: Differential drag as a means of spacecraft formation control. IEEE Trans. Aerosp. Electron. Syst. 47(2), 1125–1135 (2011)

    Article  ADS  Google Scholar 

  • Lara, M., Gurfil, P.: Integrable approximation of J2-perturbed relative orbits. Celest. Mech. Dyn. Astron. 114(3), 229–254 (2012). doi:10.1007/s10569-012-9437-8

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Leonard, C.L., Hollister, W.M., Bergmann, E.V.: Orbital formationkeeping with differential drag. J. Guid. Control Dyn. 12(1), 108–113 (1989). doi:10.2514/3.20374

    Article  ADS  Google Scholar 

  • Lovell, T.A., Tragesser, S.G.: Guidance for relative motion of low earth orbit spacecraft based on relative orbit elements. In: AIAA Guidance, Navigation and Control Conference and Exhibit, Number 04-4988, Providence, Rhode Island, USA (2004)

  • Martinusi, V., Gurfil, P.: Solutions and periodicity of satellite relative motion under even zonal harmonics perturbations. Celest. Mech. Dyn. Astron. 111(4), 387–414 (2011). doi:10.1007/s10569-011-9376-9

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Mingotti, G., McInnes, C.: High area-to-mass ratio and small length-scale spacecraft formation flying applications. In: 5th International Conference on Spacecraft Formation Flying Missions & Technologies (SFFMT) Munich, Germany (2013)

  • Montenbruck, O., Kirschner, M., D’Amico, S., Bettadpur, S.: E/I-vector separation for safe switching of the GRACE formation. Aerosp. Sci. Technol. 10(7), 628–635 (2006). doi:10.1016/j.ast.2006.04.001

    Article  MATH  Google Scholar 

  • Pérez, D., Wohlberg, B., Lovell, T.A., Shoemaker, M., Bevilacqua, R.: Orbit-centered atmospheric density prediction using artificial neural networks. Acta Astronautica 98, 9–23 (2014). doi:10.1016/j.actaastro.2014.01.007

    Article  ADS  Google Scholar 

  • Pérez, D., Bevilacqua, R.: Differential drag spacecraft rendezvous using an adaptive Lyapunov control strategy. Acta Astronautica 83, 196–207 (2013). doi:10.1016/j.actaastro.2012.09.005

    Article  ADS  Google Scholar 

  • Pérez, D., Bevilacqua, R.: Lyapunov-based adaptive feedback for spacecraft planar relative maneuvering via differential drag. J. Guid. Control Dyn. 37(5), 1678–1684 (2014). doi:10.2514/1.G000191

    Article  ADS  Google Scholar 

  • Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems. AIAA Education Series, Reston, VA (2003). doi:10.2514/4.861550

  • Schaub, H., Alfriend, K.T.: J2 invariant reference orbits for spacecraft formations. Celest. Mech. Dyn. Astron. 79(2), 77–95 (2001)

    Article  MATH  ADS  Google Scholar 

  • Schweighart, S.A., Sedwick, R.J.: High-fidelity linearized J2 model for satellite formation flight. J. Guid. Control Dyn. 25(6), 1073–1080 (2002)

    Article  ADS  Google Scholar 

  • Sinclair, A.J., Sherrill, R.E., Lovell, T.A.: Calibration of linearized solutions for satellite relative motion. J. Guid. Control Dyn. 37(4), 1362–1367 (2014). doi:10.2514/1.G000037

    Article  ADS  Google Scholar 

  • Vadali, S.R.: Model for linearized satellite relative motion about a J2-perturbed mean circular orbit. J. Guid. Control Dyn. 32(5), 1687–1691 (2009). doi:10.2514/1.42955

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Gaias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaias, G., Ardaens, JS. & Montenbruck, O. Model of \(J_2\) perturbed satellite relative motion with time-varying differential drag. Celest Mech Dyn Astr 123, 411–433 (2015). https://doi.org/10.1007/s10569-015-9643-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-015-9643-2

Keywords

Navigation