Skip to main content
Log in

Constructing ballistic capture orbits in the real Solar System model

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

An Erratum to this article was published on 06 November 2014

Abstract

A method to design ballistic capture orbits in the real Solar System model is presented, so extending previous works using the planar restricted three-body problem. In this generalization a number of issues arise, which are treated in the present work. These involve reformulating the notion of stability in three-dimensions, managing a multi-dimensional space of initial conditions, and implementing a restricted \(n\)-body model with accurate planetary ephemerides. Initial conditions are categorized into four subsets according to the orbits they generate in forward and backward time. These are labelled weakly stable, unstable, crash, and acrobatic, and their manipulation allows us to derive orbits with prescribed behavior. A post-capture stability index is formulated to extract the ideal orbits, which are those of practical interest. Study cases analyze ballistic capture about Mercury, Europa, and the Earth. These simulations show the effectiveness of the developed method in finding solutions matching mission requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. The ephemerides are defined in the International Celestial Reference Frame (ICRF), which has an infinitesimal discrepancy with respect to the EME2000 (Archinal 2011).

  2. Data available at http://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de430.bsp, \(\sim \)/satellites/ jup310.bsp, \(\sim \)/sat360.bsp, \(\sim \)/ura111.bsp, \(\sim \)/nep081.bsp, and \(\sim \)/plu043.bsp [retrieved 5 May 2014].

  3. Data available at http://naif.jpl.nasa.gov/naif/toolkit.html [retrieved 5 May 2014].

References

  • Archinal, B.A., et al.: Report of the IAU working group on cartographic coordinates and rotational elements: 2009. Celest. Mech. Dyn. Astron. 109(2), 101–135 (2011). doi:10.1007/s10569-010-9320-4

    Article  ADS  MATH  Google Scholar 

  • Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics, p. 125. AIAA, New York (1987)

    MATH  Google Scholar 

  • Belbruno, E.: Capture Dynamics and Chaotic Motions in Celestial Mechanics: With Applications to the Construction of Low Energy Transfers. Princeton University Press, Princeton (2004)

    Google Scholar 

  • Belbruno, E., Miller, J.: Sun-perturbed Earth-to-Moon transfers with ballistic capture. J. Guid. Control Dyn. 16, 770–775 (1993). doi:10.2514/3.21079

    Article  ADS  Google Scholar 

  • Belbruno, E., Gidea, M., Topputo, F.: Weak stability boundary and invariant manifolds. SIAM J. Appl. Dyn. Syst. 9(3), 1061–1089 (2010). doi:10.1137/090780638

    Article  MATH  MathSciNet  Google Scholar 

  • Belbruno, E., Gidea, M., Topputo, F.: Geometry of weak stability boundaries. Qual. Theory Dyn. Syst. 12(1), 53–66 (2013). doi:10.1007/s12346-012-0069-x

    Article  MATH  MathSciNet  Google Scholar 

  • Belbruno, E., Topputo, F., Gidea, M.: Resonance transitions associated to weak capture in the restricted three-body problem. Adv. Space Res. 42(8), 18–39 (2008). doi:10.1016/j.asr.2008.01.018

    Article  Google Scholar 

  • Campagnola, S., Buffington, B., Petropoulos, A.: Jovian tour design for orbiter and lander missions to Europa. Acta Astronaut. 100, 68–81 (2014). doi:10.1016/j.actaastro.2014.02.005

    Article  ADS  Google Scholar 

  • Ceccaroni, M., Biggs, J., Biasco, L.: Analytic estimates and topological properties of the weak stability boundary. Celest. Mech. Dyn. Astron. 114(1–2), 1–24 (2012). doi:10.1007/s10569-012-9419-x

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Chung, M.J., Hatch, S.J., Kangas, J.A., Long, S.M., Roncoli, R.B., Sweetser, T.H.: Trans-lunar cruise trajectory design of GRAIL (gravity recovery and interior laboratory) mission. In: AIAA/AAS Astrodynamics Specialist Conference, AIAA 2010, vol. 8384, pp. 2–5. Toronto, Ontario (2010)

  • Circi, C.: Properties of transit trajectory in the restricted three and four-body problem. Adv. Space Res. 49(10), 1506–1519 (2012). doi:10.1016/j.asr.2012.02.034

    Article  ADS  Google Scholar 

  • Circi, C., Teofilatto, P.: On the dynamics of weak stability boundary lunar transfers. Celest. Mech. Dyn. Astron. 79(1), 41–72 (2001). doi:10.1023/A:1011153610564

    Article  ADS  MATH  Google Scholar 

  • Circi, C., Teofilatto, P.: Effect of planetary eccentricity on ballistic capture in the solar system. Celest. Mech. Dyn. Astron. 93(1–4), 69–86 (2005). doi:10.1007/s10569-005-3640-9

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Elliot, J., Alkalai, L.: Lunette: a network of lunar landers for in-situ geophysical science. Acta Astronaut. 68, 1201–1207 (2011)

    Article  ADS  Google Scholar 

  • Fantino, E., Gómez, G., Masdemont, J., Ren, Y.: A note on libration point orbits, temporary capture and low-energy transfers. Acta Astronaut. 67(9–10), 1038–1052 (2010). doi:10.1016/j.actaastro.2010.06.037

    Article  ADS  Google Scholar 

  • Folkner, W.M., Williams, J.G., Boggs, D.H., Park, R.S., Kuchynka, P.: The Planetary and Lunar Ephemerides DE430 and DE431, Technical report, IPN Progress Report, pp. 42–196 (2014)

  • García, F., Gómez, G.: A note on weak stability boundaries. Celest. Mech. Dyn. Astron. 97, 87–100 (2007). doi:10.1007/s10569-006-9053-6

    Article  ADS  MATH  Google Scholar 

  • Gómez, G., Jorba, A., Masdemont, J., Simó, C.: Study of the transfer from the Earth to a halo orbit around the equilibrium point L1. Celest. Mech. Dyn. Astron. 56, 541–562 (1993)

    Article  ADS  MATH  Google Scholar 

  • Hyeraci, N., Topputo, F.: Method to design ballistic capture in the elliptic restricted three-body problem. J. Guid. Control Dyn. 33(6), 1814–1823 (2010). doi:10.2514/1.49263

    Article  ADS  Google Scholar 

  • Hyeraci, N., Topputo, F.: The role of true anomaly in ballistic capture. Celest. Mech. Dyn. Astron. 116(2), 175–193 (2013). doi:10.1007/s10569-013-9481-z

    Article  ADS  MathSciNet  Google Scholar 

  • Jehn, R., Campagnola, S., García, D., Kemble, S.: (2004) Low-thrust approach and gravitational capture at Mercury. In: Proceedings of the 18th International Symposium on Space Flights Dynamics, vol. 584, p. 487. Munich, Germany

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Low energy transfer to the Moon. Celest. Mech. Dyn. Astron. 81, 63–73 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Constructing a low energy transfer between Jovian moons. Contemp. Math. 292, 129–145 (2002)

    Article  MathSciNet  Google Scholar 

  • Makó, Z.: Connection between Hill stability and weak stability in the elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 120(3), 233–248 (2014). doi:10.1007/s10569-014-9577-0

  • Makó, Z., Szenkovits, F.: Capture in the circular and elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 90, 51–58 (2004). doi:10.1007/s10569-004-5899-7

  • Makó, Z., Szenkovits, F., Salamon, J., Oláh-Gál, R.: Stable and unstable orbits around Mercury. Celest. Mech. Dyn. Astron. 108, 357–370 (2010). doi:10.1007/s10569-010-9309-z

  • Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: Low-energy, low-thrust transfers to the Moon. Celest. Mech. Dyn. Astron. 105(1–3), 61–74 (2009). doi:10.1007/s10569-009-9220-7

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: Efficient invariant-manifold, low-thrust planar trajectories to the Moon. Commun. Nonlinear Sci. Numer. Simul. 17(2), 817–831 (2012). doi:10.1016/j.cnsns.2011.06.033

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Parker, J.: Establishing a network of lunar landers via low-energy transfers. In: 24th AAS/AIAA Space Flight Mechanics Meeting, Santa Fe, New Mexico, 26–30 January, pp. 1–21 (2014)

  • Romagnoli, D., Circi, C.: Earth–Moon weak stability boundaries in the restricted three and four body problem. Celest. Mech. Dyn. Astron. 103(1), 79–103 (2009). doi:10.1007/s10569-008-9169-y

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Russell, R.P.: Survey of Spacecraft Trajectory Design in Strongly Perturbed Environments. Journal of Guidance, Control, and Dynamics 35(3), 705–720 (2012). doi:10.2514/1.56813

    Article  ADS  Google Scholar 

  • Schoenmaekers, J., Horas, D., Pulido, J.A.: SMART-1: with solar electric propulsion to the Moon. In: Proceeding of the 16th International Symposium on Space Flight Dynamics, pp. 3–7. Pasadena, California (2001)

  • Sousa Silva, P., Terra, M.: Applicability and dynamical characterization of the associated sets of the algorithmic weak stability boundary in the lunar sphere of influence. Celest. Mech. Dyn. Astron. 113, 141–168 (2012a). doi:10.1007/s10569-012-9409-z

    Article  ADS  MathSciNet  Google Scholar 

  • Sousa Silva, P., Terra, M.: Diversity and validity of stable-unstable transitions in the algorithmic weak stability boundary. Celest. Mech. Dyn. Astron. 113, 453–478 (2012b). doi:10.1007/s10569-012-9418-y

  • Szebehely, V.: Theory of orbits: The Restricted Problem of Three Bodies. Academic Press Inc., Academic Press Inc (1967)

    Google Scholar 

  • Topputo, F.: On optimal two-impulse Earth–Moon transfers in a four-body model. Celest. Mech. Dyn. Astron. 117(3), 279–313 (2013). doi:10.1007/s10569-013-9513-8

    Article  ADS  MathSciNet  Google Scholar 

  • Topputo, F., Belbruno, E.: Computation of weak stability boundaries: Sun–Jupiter system. Celest. Mech. Dyn. Astron. 105(1–3), 3–17 (2009). doi:10.1007/s10569-009-9222-5

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Topputo, F., Belbruno, E., Gidea, M.: Resonant motion, ballistic escape, and their applications in astrodynamics. Adv. Space Res. 42(8), 6–17 (2008). doi:10.1016/j.asr.2008.01.017

    Article  Google Scholar 

  • Urrutxua, H., Scheeres, D., Bombardelli, C., Gonzalo, J.L., Pelaez, J.: What does it take to capture an Asteroid? A case study on capturing Asteroid 2006 RH120. In 24th AAS/AIAA Space Flight Mechanics Meeting, Santa Fe, New Mexico, 26–30 January, pp. 1–20 (2014)

  • Vetrisano, M., Van der Weg, W., Vasile, M.: Navigating to the moon along low-energy transfers. Celest. Mech. Dyn. Astron. 114(1–2), 25–53 (2012). doi:10.1007/s10569-012-9436-9

    Article  ADS  Google Scholar 

  • Yagasaki, K.: Sun-perturbed Earth-to-Moon transfers with low energy and moderate flight time. Celest. Mech. Dyn. Astron. 90, 197–212 (2004). doi:10.1007/s10569-004-0406-8

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The first author acknowledges financial support from China Scholarship Council and the Innovation Fund of National University of Defense Technology under Grant No. B100101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Topputo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, ZF., Topputo, F., Bernelli-Zazzera, F. et al. Constructing ballistic capture orbits in the real Solar System model. Celest Mech Dyn Astr 120, 433–450 (2014). https://doi.org/10.1007/s10569-014-9580-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-014-9580-5

Keywords

Navigation