Skip to main content
Log in

Analytic characterization of measurement uncertainty and initial orbit determination on orbital element representations

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper presents an approach to characterize the uncertainty associated with the state vector obtained from the Herrick-Gibbs orbit determination approach using transformation of variables. The approach is applied to estimate the state vector and its probability density function for objects in low Earth orbit using sparse observations. The state vector and associated uncertainty estimates are computed in Cartesian coordinates and Keplerian elements. The approach is then extended to accommodate the \(J_2\) perturbation where the state vector is written in terms of mean orbital elements. The results obtained from the analytical approach presented in this paper are validated using Monte Carlo simulations and compared with the often utilized similarity transformation for Kepler, mean, and nonsingular elements. The measurement uncertainty characterization obtained is used to initialize conventional nonlinear filters as well as operate a Bayesian approach for orbit determination and object tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Armellin, R., Di Lizia, P., Lavagna, M.: High-order expansion of the solution of preliminary orbit determination problem. Celest. Mech. Dyn. Astron. 112, 331–352 (2012)

    Article  ADS  Google Scholar 

  • Au, C., Tam, J.: Transforming variables using the Dirac generalized function. Am. Stat. 53(3), 270–272 (1999)

    Google Scholar 

  • Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics (revised edn). AIAA, Reston, pp. 110–114, 125–130, 135, 109–212, 490–493, 743–744 (1999)

  • Broucke, R.: On the matrizant of the two-body problem. Astron. Astrophys. 6, 173–182 (1970)

    ADS  MATH  MathSciNet  Google Scholar 

  • Bryson, A.E., Ho, Y.C.: Applied Optimal Control: Optimization, Estimation, and Control. Blaisdell, Waltham, MA, pp. 299–301, 377–381, 385 (1969)

  • Crassidis, J.L., Junkins, J.L.: Optimal Estimation of Dynamic Systems. CRC Press, Boca Raton, FL, pp. 24–29, 81–84, 92–95, 123–128, 132–139, 149–154, 285–289, 310–314, 419–430, 450–463, 549, 553–567 (2004)

  • DeRusso, P.M., Roy, R.J., Close, C.M.: State Variables for Engineers. Wiley, New York, pp. 249–250, 254–262 (1965)

  • Escobal, P.R.: Methods of Orbit Determination. Wiley, New York, pp. 107–121, 228–231, 239, 293, 318 (1965)

  • Fujimoto, K., Scheeres, D.: Correlation and initial orbit determination for short-arc optical observation. In: Advanced Maui Optical and Space Surveillance Technologies Conference, Wailea, Maui, HI (2010a)

  • Fujimoto, K., Scheeres, D.: Correlation of optical observations of Earth-orbiting objects by means of probability distributions. In: AIAA/AAS Astrodynamics Specialist Conference, Toronto, Canada, AIAA-2010-7975 (2010b)

  • Fujimoto, K., Scheeres, D.: Correlation of multiple singular observations and initial state estimation by means of probability distributions of high codimension. In: American Control Conference, Toronto, Canada (2011)

  • Fujimoto, K., Scheeres, D., Alfriend, K.: Analytical nonlinear propagation of uncertainty in the two-body problem. J. Guid. Control Dyn. 35(2), 497–509 (2012)

    Article  ADS  Google Scholar 

  • Gim, D.W., Alfriend, K.T.: State transition matrix of relative motion for the perturbed noncircular reference orbit. J. Guid. Control Dyn. 26(6), 956–971 (2003)

    Article  ADS  Google Scholar 

  • Hari, B.S., Venugopalakrishna, Y.: On the use of dirac delta distribution in transformation of random variables. In: 14th National Conference on Communications, IIT Bombay, Mumbai, AIAA 2008-7211 (2008)

  • Hill, K., Alfriend, K.T., Sabol, C.: Covariance-based uncorrelated track association. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, HI, AIAA 2008-7211 (2008)

  • Hough, M.: Improved performance of recursive tracking filters using batch initialization and process noise adaptation. J. Guid. Control. Dyn. 22(5), 675–681 (1999)

    Article  ADS  Google Scholar 

  • Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Dover, Mineola, pp. 34–42, 55–56, 77–81, 85–92, 145–158, 174–175, 189–193 (1998)

  • Junkins, J.L., Singla, P.: How nonlinear is it? A tutorial of orbit and attitude dynamics. J. Astronaut. Sci. 52(1–2), 7–60 (2004)

    MathSciNet  Google Scholar 

  • Junkins, J.L., Akella, M.R., Alfriend, K.T.: Non-Gaussian error propagation in orbital mechanics. J. Astronaut. Sci. 44(4), 541–563 (1996)

    Google Scholar 

  • Karimi, R.R., Mortari, D.: Initial orbit determination using multiple observations. Celes. Mech. Dyn. Astron. 109(2), 167–180 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Khuri, A.I.: Applications of dirac’s delta function in statistics. Int. J. Math. Educ. Sci. Technol. 35(2), 185–195 (2004)

    Article  MathSciNet  Google Scholar 

  • Lee, D.J., Alfriend, K.: Sigma point filtering for sequential orbit estimation and prediction. J. Spacecr. Rocket. 44(2), 388–398 (2007)

    Article  ADS  Google Scholar 

  • Long, A., Cappellari, Jr J., Velez, C., Fuchs, A.: Goddard Trajectory Determination System (GTdS) mathematical theory (revision 1). Technical report NASA-CR-183462, NASA Goddard Spaceflight Center, pp. 5.43–5.63, 8.13–8.16 (1989)

  • Majji, M., Junkins, J.L., Turner, J.D.: High order keplerian state transition tensors. In: AAS/AIAA F. Landis Markley Astronautics Symposium, Cambridge, MD, AAS 08-270 (2008a)

  • Majji, M., Junkins, J.L., Turner, J.D.: A high order method for estimation of dynamic systems. J. Astronaut. Sci. 56(3), 401–440 (2008b)

    Article  Google Scholar 

  • Majji, M., Weisman, R.M., Alfriend, K.T.: Solution of the Liouville equation for Keplerian motion: Application to uncertainty calculations. In: AAS/AIAA Spaceflight Mechanics Conference, Charleston, SC, AAS 12–262 (2012)

  • Mosegaard K, Tarantola A (2002) International Handbook of Earthquake and Engineering Seismology: Part A, International Geophysics Series, vol 81A, Academic Press, New York, NY, Chap. 16 : Probabilistic Approach to Inverse Problems. pp. 237–265 and Appendices A-P.

  • Muinonen, K., Bowell, E.: Asteriod orbit determination using Bayesian probabilities. Icarus 103(2), 255–279 (1993)

    Google Scholar 

  • Papoulis, A.: Probability, Random Variables, and Stochastic Processes, 3rd edn. McGraw-Hill, Boston, MA, pp. 135–148, 151–154, 164–166, 169–170, 192–195, 297–303, 635–654 (1991)

  • Park, R.S., Scheeres, D.J.: Nonlinear mapping of Gaussian statistics: theory and applications to spacecraft trajectory design. J. Guid. Control Dyn. 29(6), 1367–1375 (2006)

    Google Scholar 

  • Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House, Norwood, MA, pp. 4–9, 19–32, 35–57 (2004)

  • Sabol, C., Sukut, T., Hill, K., Alfriend, K.T., Wright, B., Li, Y., Schumacher, P.: Linearized orbit covariance generation and propagation analysis via simple Monte Carlo simulations. In: AAS/AIAA Spaceflight Mechanics Meeting, San Diego, CA, AAS 10-134 (2010)

  • Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems, 1st edn. AIAA, Reston, VA, pp. 72–82, 87–91, 95–101, 133–135, 404–418, 479–483, 519–525, 693–696 (2003)

  • Scheeres, D.J., Hsiao, F.Y., Park, R., Villac, B., Maruskin, J.: Fundamental limits on spacecraft orbit uncertainty and distribution propagation. J. Astronaut. Sci. 54(3–4), 505–523 (2005)

    Google Scholar 

  • Schneider, M.: Bayesian linking of geosynchronous orbital debris tracks as seen by the large synoptic survey telescope. Adv. Space Res. 49(4), 655–666 (2011)

    Article  ADS  Google Scholar 

  • Shamilov, A., Yuzer, A.F., Agaoglu, E., Mert, Y.: A method of obtaining distributions of transformed random variables by using the heaviside step function and dirac generalized functions. J. Stat. Res. 40(1), 23–34 (2006)

    MathSciNet  Google Scholar 

  • Stark H, Woods JW (2002) Probability and Random Processes with Applications to Signal Processing, 3rd edn. Prentice-Hall, Upper Saddle River, pp. 158–159, 174–175

  • Stewart, J.: Calculus: Early Transcendentals, 4th edn. Brooks/Cole, Pacific Grove, CA, pp. 1020–1022, 1026–1033 (1999)

  • Tapley, B.D., Schutz, B.E., Born, G.H.: Statistical Orbit Determination. Elsevier, Burlington, MA, pp. 230–233, 244–245, 251–258, 493–497 (2004)

  • Turner, J.D., Majji, M., Junkins, J.L.: High-order state and parameter transition tensor calculations. In: AIAA/AAS Astrodynamics Specialist Conference, Honolulu, HI, AIAA-2008-6453 (2009)

  • Vallado, D.A.: Covariance transformations for satellite flight dynamics operations. In: AAS/AIAA Astrodynamics Specialist Conference, Big Sky, MT, AAS 03-526 (2003)

  • Vallado, D.A.: Fundamentals of Astrodynamics and Applications, 3rd edn. Microcosm, Hawthorne, CA, pp. 103–119, 153–167, 708–711, 721–722, 783–792, 806–811, 817–823 (2007)

  • Virtanen, J., Muinonen, K.: Time evolution of orbital uncertainties for the impactor candidate 2004 \(\text{ AS }_1\). Icarus 184(2), 289–301 (2006)

    Google Scholar 

  • Virtanen, J., Muinonen, K., Bowell, E.: Statistical ranging of asteroids. Icarus 154(2), 412–431 (2001)

    Google Scholar 

  • Weisman, R.M.: Nonlinear transformations and filtering theory for space operations. Ph.D. thesis, Texas A &M University, College Station, TX (2012)

  • Weisman, R.M., Majji, M., Alfriend, K.T.: Analytic assessment of sensor uncertainty for application to space object tracking and correlation. In: 62nd International Astronautical Congress: Space Debris Symposium, Cape Town, South, Africa, IAC-11-A6.6.7-10729 (2011a)

  • Weisman, R.M., Majji, M., Alfriend, K.T.: Application of the transformation of variables technique for uncertainty mapping in nonlinear filtering. In: AAS/AIAA Astrodynamics Specialist Conference, Girdwood, AK, AAS 11-604 (2011b)

  • Weisman, R.M., Majji, M., Alfriend, K.T.: Analytic characterization of measurement uncertainty and initial orbit determination on orbital element uncertainty and correlation. In: AAS/AIAA Spaceflight Mechanics Conference, Kauai, HI, AAS 13-203 (2013)

  • Weisman, R.M., Majji, M., Alfriend, K.T.: Application of the transformation of variables technique for uncertainty mapping in nonlinear filtering. Celest. Mech. Dyn. Astron. (2014). doi:10.1007/s10569-013-9527-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Weisman.

Additional information

Presented in part as Paper AAS 13-203 at the AAS/AIAA Spaceflight Mechanics Conference, Kauai, HI., Feb. 10–14, 2013.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 152 KB)

Appendix 1

Appendix 1

This appendix demonstrates the TOV technique for instances where the desired domain has the same number of base functions as the initial domain and when the desired domain has less base functions than the initial domain.

1.1 Transformation of variables for \(\mathfrak {R}^n\rightarrow \mathfrak {R}^m \, , \, m = n\)

Consider the two-dimensional mapping of Cartesian coordinates, \(\mathbf{x} \doteq \left( x, y\right) \), from a range and angle pair set, \(\mathbf{z}\doteq \left( \rho ,\alpha \right) \), Eq. (26). Let the spherical domain be the initial domain with a given continuous joint PDF, \(p\left( \mathbf{z}\right) \), the Cartesian domain PDF, \(p\left( \mathbf{x}\right) \), is computed by applying Eq. (1) and the result shown in Eq. (27).

$$\begin{aligned}&\begin{array}{ccl|ccl} \rho &{}=&{} \sqrt{x^2+y^2}&{}x&{}=&{}\rho \cos (\alpha )\\ \alpha &{}=&{} \arctan \left[ \displaystyle \frac{x}{y}\right] &{}y&{}=&{}\rho \sin (\alpha )\\ \end{array} \end{aligned}$$
(26)
$$\begin{aligned}&p\left( \mathbf{x}\right) =p\bigg (\mathbf{z}=\psi \left( \mathbf{x}\right) \bigg )\bigg \vert \rho \bigg \vert _{\mathbf{z}=\psi \left( \mathbf{x}\right) }^{-1} \end{aligned}$$
(27)

1.2 Transformation of variables for \(\mathfrak {R}^n\rightarrow \mathfrak {R}^m\, ,\, m < n\) (auxiliary variable method)

When concerned with a subset of variables related to the initial domain, the method of auxiliary variables (Papoulis 1991) can be applied to populate a square Jacobian. Let the auxiliary variable be the angle, \(\alpha \), this results in a square Jacobian, Eq. (28), and joint and marginal PDFs shown by Eq. (29). With \(\rho \) as the auxiliary variable, Eq. (30) would result. Equations (29) and (30) are derived differently based upon elimination of auxiliary variables but are equivalent due to the invariance of total probability.

$$\begin{aligned}&\displaystyle \frac{\partial \left( x, \alpha \right) }{\partial \left( \rho ,\ \alpha \right) }=\underbrace{ \left[ \begin{array}{cc} \cos (\alpha )&{}-\rho \sin (\alpha )\\ 0&{}1 \end{array}\right] }_{J} \left[ \begin{array}{c} \rho \\ \alpha \end{array}\right] \end{aligned}$$
(28)
$$\begin{aligned}&\displaystyle p\left( x,\ \alpha \right) = p\bigg (\rho = \frac{x}{\cos (\alpha )},\ \alpha = \alpha \bigg )\bigg \vert \cos (\alpha )\bigg \vert ^{-1} \nonumber \\&\displaystyle p\left( x\right) = \displaystyle \int \limits _{\alpha _0}^{\alpha _f}p\left( x,\ \alpha \right) d\alpha \end{aligned}$$
(29)
$$\begin{aligned}&\displaystyle p\left( x,\ \rho \right) =p\bigg (\rho =\rho ,\ \alpha = \arccos (x/\rho )\bigg )\bigg \vert \ \rho \sin (\alpha )\bigg \vert _{\alpha =\arccos (x/\rho )}^{-1} \nonumber \\&\displaystyle p\left( x\right) = \displaystyle \int \limits _{\rho _0}^{\rho _f}p\left( x,\ \rho \right) d\rho \end{aligned}$$
(30)

1.3 Transformation of variables for \(\mathfrak {R}^n\rightarrow \mathfrak {R}^m\, ,\, m < n\) (Dirac delta method)

The reduced state variable PDF representation for continuous or discrete random variables can be computed using the Dirac delta method (Au and Tam 1999). The method applies the Dirac generalized function in order to transform only the needed variables to the state(s) of interest, the continuous random variables the application is given by Theorem 1.

Theorem 1

Suppose that \(z_i,\,i=\left[ 1,n\right] \), are continuous random variables with joint probability distribution \(p\left( z_1,\ z_2, \dots , \ z_n\right) \). Let \({\fancyscript{D}}\) be the \(n\)-dimensional set of every possible outcome of the \(z_i\)’s. Then the continuous random variable

$$\begin{aligned} x = \psi ^{-1}\left( z_1,\ z_2, \dots , \ z_n\right) \end{aligned}$$

has the probability distribution given by use of the Kronecker delta \(\delta _{a,b}\) in the form

$$\begin{aligned} p\left( x\right) =\displaystyle \int \limits _{{\fancyscript{D}}^\mathbf{z}}p\left( z_1,\ z_2, \dots , \ z_n\right) \delta \left[ \psi ^{-1}\left( z_1,\ z_2, \dots , \ z_n\right) -x\right] dz_1dz_2\dots dz_n. \end{aligned}$$
(31)

To compute the result of Theorem 1, properties of the Kronecker delta are required and given by Eq. (32). The composition property in Eq. (32) is computed using the roots, \(y_n\), of the function \(f\), hence \(f(y_n)=0\). For the translation property the limits of integration can be over any domain surrounding the critical points where the Kronecker delta is not zero. The Kronecker delta scaling, sifting, and translation properties allow for the theorem to be carried out.

$$\begin{aligned} \begin{array}{lcl} Scaling&{} &{}\\ &{}\delta (ay)&{}=\left| \displaystyle \frac{\partial (ay)}{\partial a}\right| ^{-1}\delta (y)=\displaystyle \frac{1}{\vert a\vert }\delta (y)\\ Translation(sifting)&{} &{}\\ &{}f(a)&{}=\displaystyle \int \limits _{-\infty }^\infty f(y)\delta (y-a)dy \\ Composition&{} &{}\\ &{}\delta \bigg (f(y)\bigg )&{}=\displaystyle \sum _n \delta (y-y_n)\left| \frac{\partial f(y)}{\partial y}\right| _{y_n}^{-1}\\ &{}\mathrm{Where:}&{}\quad f(y_n)=0\quad \mathrm{and }\quad \displaystyle \frac{\partial f(y)}{\partial y}\ne 0 \end{array} \end{aligned}$$
(32)

Application of Theorem 1 allows for Eq. (29) to be computed without the need for evaluating the \(2\times 2\) Jacobian, shown in Eq. (33). The roots of \(x-\rho \cos (\alpha )=0\) are \(\rho =x/\cos (\alpha )\) and \(\alpha = \arccos (x/\rho )\), using the first root to replace the range random variable results in the scaling factor to be \(\frac{\partial }{\partial x}\left( x/\cos (\alpha )\right) = \sec (\alpha )\). Once the distribution is properly scaled, it can then be sifted to alleviate dependence on the range random variable, leaving only the angle random variable to be integrated over to produce the desired marginal PDF.

$$\begin{aligned} p\left( x\right)&= \displaystyle \int \limits _{{\fancyscript{D}}^\rho } \int \limits _{{\fancyscript{D}}^{\alpha }}p\left( \rho ,\alpha \right) \delta \left[ \rho \cos (\alpha )-x\right] d\rho d\alpha \nonumber \\&= \displaystyle \int \limits _{{\fancyscript{D}}^\rho } \int \limits _{{\fancyscript{D}}^{\alpha }}\frac{p\left( \rho ,\alpha \right) }{\left| \cos (\alpha )\right| }\delta \left[ \rho -\frac{x}{\cos (\alpha )}\right] d\rho d\alpha \nonumber \\&= \displaystyle \int \limits _{\alpha _0}^{\alpha _f}\frac{1}{\cos (\alpha )}p \left( \rho =\frac{x}{\cos (\alpha )},\alpha \right) d\alpha \end{aligned}$$
(33)

Equation (30) can be reproduced in a similar manner by utilizing the angle root, \(\alpha = \arccos (x/\rho )\), and using its derivative with respect to the state of interest, \(x\), for the scaling factor as shown by Eq. (34). Further examples of the application of the method can be found in (Khuri 2004; Shamilov et al. 2006; Hari and Venugopalakrishna 2008).

$$\begin{aligned} p\left( x\right)&= \displaystyle \int \limits _{{\fancyscript{D}}^\rho } \int \limits _{{\fancyscript{D}}^{\alpha }}p\left( \rho ,\alpha \right) \delta \left[ \rho \cos (\alpha )-x\right] d\rho d\alpha \nonumber \\&= \displaystyle \int \limits _{{\fancyscript{D}}^\rho } \int \limits _{{\fancyscript{D}}^{\alpha }}\frac{p\left( \rho ,\alpha \right) }{\rho \sin (\alpha )}\delta \left[ \alpha -\arccos \left( \displaystyle \frac{x}{\rho }\right) \right] d\rho d\alpha \nonumber \\&= \displaystyle \int \limits _{\rho _0}^{\rho _f}\left| \frac{1}{\rho \sin (\alpha )}\right| _{\alpha = \arccos \left( \displaystyle \frac{x}{\rho }\right) }p \left( \rho =\rho ,\alpha =\arccos \left( \displaystyle \frac{x}{\rho } \right) \right) d\rho \end{aligned}$$
(34)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisman, R.M., Majji, M. & Alfriend, K.T. Analytic characterization of measurement uncertainty and initial orbit determination on orbital element representations. Celest Mech Dyn Astr 118, 165–195 (2014). https://doi.org/10.1007/s10569-013-9529-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-013-9529-0

Keywords

Navigation