Skip to main content
Log in

Application of the transformation of variables technique for uncertainty mapping in nonlinear filtering

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper addresses the impact nonlinear observations of state variables have on uncertainty accuracy associated with state estimation algorithms. The transformation of variables technique is applied to exactly map probability density functions (PDFs) between domains completely spanned by different combinations of basis vectors. The technique allows for proper generation of the likelihood density when converting from measurement to state variable space and for association of a present state distribution with prior observation data. The exact mapping of probability distribution functions between domains and proper characterization of prior knowledge allows for Bayesian estimation to be appropriately carried out. A Bayes filter utilizing the technique is developed which uses the technique to map the uncertainty in time for generation of the prior density and in space for generation of the likelihood density. The filter is compared with conventional nonlinear filtering techniques in multiple scenarios to demonstrate the utility and insight offered for object tracking and parameter estimation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Au, C., Tam, J.: Transforming variables using the Dirac generalized function. Am. Stat. 53(3), 270–272 (1999)

    Google Scholar 

  • Bryson, A.E., Ho, Y.C.: Applied Optimal Control: Optimization, Estimation, and Control. Blaisdell, Waltham, MA, pp. 299–301, 377–381, 385 (1969)

  • Crassidis, J.L., Junkins, J.L.: Optimal Estimation of Dynamic Systems. CRC Press, Boca Raton, FL, pp. 24–29, 81–84, 92–95, 123–128, 132–139, 149–154, 285–289, 310–314, 419–430, 450–463, 549, 553–567 (2004)

  • DeRusso, P.M., Roy, R.J., Close, C.M.: State Variables for Engineers. Wiley, New York, NY, pp. 249–250, 254–262 (1965)

  • Halder, A., Bhattacharya, R.: Dispersion analysis in hypersonic flight during planetary entry using stochastic liouville’s equation. J. Guid. Control. Dyn. 34(2), 459–474 (2011)

    Article  ADS  Google Scholar 

  • Hari, B.S., Venugopalakrishna, Y: On the use of Dirac delta distribution in transformation of random variables. In: 14th National Conference on Communications, IIT Bombay, Mumbai, aIAA 2008-7211 (2008)

  • Ho, Y.: A Bayesian approach to problems in stochastic estimation and control. Trans. Autom. Control 9(4), 333–339 (1964)

    Google Scholar 

  • Izzo, D.: Effects of orbital parameter uncertainties. J. Guid. Control Dyn. 28(2), 212–215 (2005)

    Article  Google Scholar 

  • Izzo, D.: Statistical distribution of Keplerian velocities. J. Guid. Control Dyn. 29(1), 298–305 (2006)

    Article  Google Scholar 

  • Izzo, D., Valente, C.: A mathematical model representing the statistical properties of sets of orbits. Acta Astronaut. 54(8), 541–546 (2004)

    Article  ADS  Google Scholar 

  • Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Dover, Mineola, NY, pp. 34–42, 55–56, 77–81, 85–92, 145–158, 174–175, 189–193 (1998)

  • Junkins, J.L., Akella, M.R., Alfriend, K.T.: Non-gaussian error propagation in orbital mechanics. J. Astronaut. Sci. 44(4), 541–563 (1996)

    Google Scholar 

  • Khuri, A.I.: Applications of Dirac’s delta function in statistics. Int. J. Math. Educ. Sci. Technol. 35(2), 185–195 (2004)

    Google Scholar 

  • Long, A., Cappellari, Jr. J., Velez, C., Fuchs, A.: Goddard trajectory determination system (gtds) mathematical theory (revision 1). In: Technical Report NASA-CR-183462, NASA Goddard Spaceflight Center, pp. 5.43–5.63, 8.13–8.16 (1989)

  • Majji, M., Junkins, J.L., Turner, J.D.: Measurement model nonlinearity in estimation of dynamical systems. In: Coffey, S.L., Junkins, J.L., Luu, K.K., Ross, I.M., Sabol, C., Paul, W., Schumacher, J. (eds) The Kyle T. Alfriend Astrodynamics Symposium, Monterey, CA, AAS 10-303 (2010)

  • Majji, M., Weisman, R.M., Alfriend, K.T.: Solution of the Liouville equation for Keplerian motion: application to uncertainty calculations. In: AAS/AIAA Spaceflight Mechanics Conference. Charleston, SC, AAS 12-262 (2012)

  • Meshcheryakov, S.: Use of generalized functions for definition of collision integrals in orbital motion. In: Proceedings of the Fourth European Conference on Space Debris. Darmstadt, Germany (2005)

  • Meshcheryakov, S.: Generalized functions and statistical problems of orbital mechanics. In: Eighth US/Russian Space Surveillance Workshop: Space Surveillance Detecting and Tracking Innovation. Maui, HI (2010)

  • Mosegaard, K., Tarantola, A.: International Handbook of Earthquake and Engineering Seismology: Part A, International Geophysics Series, vol 81A. Academic Press, New York, NY, chap 16: Probabilistic Approach to Inverse Problems. pp. 237–265 and Appendices A-P (2002)

  • Muinonen, K., Bowell, E.: Asteriod orbit determination using Bayesian probabilities. Icarus 103(2), 255–279 (1993)

    Google Scholar 

  • Papoulis, A.: Probability, Random Variables, and Stochastic Processes, 3rd edn. McGraw-Hill, Boston, MA, pp. 135–148, 151–154, 164–166, 169–170, 192–195, 297–303, 635–654 (1991)

  • Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House, Norwood, MA, pp. 4–9, 19–32, 35–57 (2004)

  • Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems, 1st edn. AIAA, Reston, VA, pp. 72–82, 87–91, 95–101, 133–135, 404–418, 479–483, 519–525, 693–696 (2003)

  • Schneider, M.: Bayesian linking of geosynchronous orbital debris tracks as seen by the large synoptic survey telescope. Adv. Space Res. 49(4), 655–666 (2011)

    Article  ADS  Google Scholar 

  • Shamilov, A., Yuzer, A.F., Agaoglu, E., Mert, Y.: A method of obtaining distributions of transformed random variables by using the heaviside step function and dirac generalized functions. J. Stat. Res. 40(1), 23–34 (2006)

    MathSciNet  Google Scholar 

  • Stark, H., Woods, J.W.: Probability and Random Processes with Applications to Signal Processing, 3rd edn. Prentice-Hall, Upper Saddle River, NJ, pp. 158–159, 174–175 (2002)

  • Stewart, J.: Calculus: Early Transcendentals, 4th edn, pp. 1020–1022, 1026–1033. Brooks/Cole, Pacific Grove, CA (1999)

  • Stone, L.D., Barlow, C.A., Corwin, T.L.: Bayesian Multiple Target Tracking. Artech House, Norwood, MA, pp. 29–34, 55–67, 103–136 (1999)

  • Tapley, B.D., Schutz, B.E., Born, G.H.: Statistical Orbit Determination. Elsevier, Burlington, MA, pp. 230–233, 244–245, 251–258, 493–497 (2004)

  • Vallado, D.A.: Covariance transformations for satellite flight dynamics operations. In: AAS/AIAA Astrodynamics Specialist Conference, Big Sky, MT, AAS 03-526 (2003)

  • Vallado, D.A.: Fundamentals of Astrodynamics and Applications, 3rd edn. Microcosm, Hawthorne, CA, pp. 103–119, 153–167, 708–711, 721–722, 783–792, 806–811, 817–823 (2007)

  • van der Merwe, R., Doucet, A., de Freitas, N., Wan, E.: The unscented particle filter. In: Technical Report CUED/F-INFENG/TR 380. Cambridge University Engineering Department (2000)

  • Virtanen, J., Muinonen, K.: Time evolution of orbital uncertainties for the impactor candidate 2004 AS\(_1\). Icarus 184(2), 289–301 (2006)

    Google Scholar 

  • Virtanen, J., Muinonen, K., Bowell, E.: Statistical ranging of asteriods. Icarus 154(2), 412–431 (2001)

    Article  ADS  Google Scholar 

  • Weisman, R.M.: Nonlinear Transformations and Filtering Theory for Space Operations. PhD thesis. Texas A&M University, College Station, TX (2012)

  • Weisman, R.M., Majji, M., Alfriend, K.T.: Analytic assessment of sensor uncertainty for application to space object tracking and correlation. In: 62nd International Astronautical Congress: Space Debris Symposium. Cape Town, South, Africa, IAC-11-A6.6.7-10729 (2011a)

  • Weisman, R.M., Majji, M., Alfriend, K.T.: Application of the transformation of variables technique for uncertainty mapping in nonlinear filtering. In: AAS/AIAA Astrodynamics Specialist Conference. Girdwood, AK, AAS 11-604 (2011b)

  • Weisman, R.M., Majji, M., Alfriend, K.T.: Analytic characterization of measurement uncertainty and initial orbit determination on orbital element representations. Celest. Mech. Dyn. Astr. 118 (2014). doi:10.1007/s10569-013-9529-0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Weisman.

Additional information

Presented in part as Paper AAS 11-604 at the AAS/AIAA Astrodynamics Specialist Conference, Girdwood, AK., July 30–August 3., 2011.

Appendix

Appendix

This appendix demonstrates the TOV technique for instances where the desired domain has the same number of base functions as the initial domain and when the desired domain as less base functions than the initial domain.

1.1 Transformation of variables for \(\mathfrak {R}^n\rightarrow \mathfrak {R}^m , m = n\)

Consider the two-dimensional mapping of Cartesian coordinates, \(\mathbf {x} \doteq \left( x, y\right) \), from a range and angle pair set, \(\mathbf {z}\doteq \left( \rho ,\alpha \right) \), Eq. (46). Let the spherical domain be the initial domain with a given continuous joint PDF, \(p\left( \mathbf {z}\right) \), the Cartesian domain PDF, \(p\left( \mathbf {x}\right) \), is computed by applying Eq. (5) and the result shown in Eq. (47).

$$\begin{aligned} \begin{aligned} \begin{array}{ccl|ccl} \rho &{}=&{} \sqrt{x^2+y^2}&{}x&{}=&{}\rho \cos (\alpha )\\ \alpha &{}=&{} \arctan \left[ \frac{x}{y}\right] &{}y&{}=&{}\rho \sin (\alpha )\\ \end{array} \end{aligned} \end{aligned}$$
(46)
$$\begin{aligned} p\left( \mathbf {x}\right) =p\bigg (\mathbf {z}=\varvec{\psi }\left( \mathbf {x}\right) \bigg )\bigg \vert \rho \bigg \vert _{\mathbf {z}=\varvec{\psi }\left( \mathbf {x}\right) }^{-1} \end{aligned}$$
(47)

1.2 Transformation of variables for \(\mathfrak {R}^n\rightarrow \mathfrak {R}^m , m < n\) (Auxiliary Variable Method)

When concerned with a subset of variables related to the initial domain, the method of auxiliary variables (Papoulis 1991) can be applied to populate a square Jacobian. Let the auxiliary variable be the angle, \(\alpha \), this results in a square Jacobian, Eq. (48), and joint and marginal PDFs shown by Eq. (49). With \(\rho \) as the auxiliary variable, Eq. (50) would result. Eqs. (49) and (50) are derived differently based upon elimination of auxiliary variables but are equivalent due to the invariance of total probability.

$$\begin{aligned} \frac{\partial \left( x, \alpha \right) }{\partial \left( \rho ,\ \alpha \right) }=\underbrace{\left[ \begin{array}{cc} \cos (\alpha )&{}-\rho \sin (\alpha )\\ 0&{}1 \end{array}\right] }_{J}\left[ \begin{array}{c}\rho \\ \alpha \end{array}\right] \end{aligned}$$
(48)
$$\begin{aligned} \begin{aligned} p\left( x,\ \alpha \right)&=p\bigg (\rho = \frac{x}{\cos (\alpha )},\ \alpha = \alpha \bigg )\bigg \vert \cos (\alpha )\bigg \vert ^{-1}\\ p\left( x\right)&= \int \limits _{\alpha _0}^{\alpha _f}p\left( x,\ \alpha \right) d\alpha \end{aligned} \end{aligned}$$
(49)
$$\begin{aligned} \begin{aligned} p\left( x,\ \rho \right)&=p\bigg (\rho =\rho ,\ \alpha = \arccos (x/\rho )\bigg )\bigg \vert \ \rho \sin (\alpha )\bigg \vert _{\alpha =\arccos (x/\rho )}^{-1}\\ p\left( x\right)&= \int \limits _{\rho _0}^{\rho _f}p\left( x,\ \rho \right) d\rho \end{aligned} \end{aligned}$$
(50)

1.3 Transformation of variables for \(\mathfrak {R}^n\rightarrow \mathfrak {R}^m\ ,\ m < n\) (Dirac delta Method)

The reduced state variable PDF representation for continuous or discrete random variables can be computed using the Dirac delta method (Au and Tam 1999). The method applies the Dirac generalized function in order to transform only the needed variables to the state(s) of interest, the continuous random variables the application is given by Theorem 1. The Kronecker delta scaling, sifting, and translation properties allow for the theorem to be carried out. Theorem 1 produces Eq. (49) without the need for evaluating the Jacobian, Eq. (52).

Theorem 1

Suppose that \(z_i,\,i=\left[ 1,n\right] \), are continuous random variables with joint probability distribution \(p\left( z_1,\ z_2, \ldots , \ z_n\right) \). Let \(\fancyscript{D}\) be the \(n\)-dimensional set of every possible outcome of the \(z_i\)’s. Then the continuous random variable

$$\begin{aligned} x = \varvec{\psi }^{-1}\left( z_1,\ z_2, \ldots , \ z_n\right) \end{aligned}$$

has the probability distribution given by use of the Kronecker delta \(\delta _{a,b}\) in the form

$$\begin{aligned} p\left( x\right) =\int \limits _\fancyscript{D^\mathbf {z}}p\left( z_1,\ z_2, \ldots , \ z_n\right) \delta \left[ \varvec{\psi }^{-1}\left( z_1,\ z_2, \ldots , \ z_n\right) -x\right] dz_1dz_2\ldots dz_n. \end{aligned}$$
(51)
$$\begin{aligned} p\left( x\right)&= \int \limits _{\fancyscript{D}^\rho }\int \limits _{\fancyscript{D}^{\alpha }}p\left( \rho ,\alpha \right) \delta \left[ \rho \cos (\alpha )-x\right] d\rho d\alpha \nonumber \\&= \int \limits _{\fancyscript{D}^\rho }\int \limits _{\fancyscript{D}^{\alpha }}\frac{p\left( \rho ,\alpha \right) }{\left| \cos (\alpha )\right| }\delta \left[ \rho -\frac{x}{\cos (\alpha )}\right] d\rho d\alpha \nonumber \\&= \int \limits _{\alpha _0}^{\alpha _f}\frac{1}{\cos (\alpha )}p\left( \rho =\frac{x}{\cos (\alpha )},\alpha \right) d\alpha \end{aligned}$$
(52)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisman, R.M., Majji, M. & Alfriend, K.T. Application of the transformation of variables technique for uncertainty mapping in nonlinear filtering. Celest Mech Dyn Astr 118, 129–164 (2014). https://doi.org/10.1007/s10569-013-9527-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-013-9527-2

Keywords

Navigation