Analytical formulation of impulsive collision avoidance dynamics

Abstract

The paper deals with the problem of impulsive collision avoidance between two colliding objects in three dimensions and assuming elliptical Keplerian orbits. Closed-form analytical expressions are provided that accurately predict the relative dynamics of the two bodies in the encounter b-plane following an impulsive delta-V manoeuvre performed by one object at a given orbit location prior to the impact and with a generic three-dimensional orientation. After verifying the accuracy of the analytical expressions for different orbital eccentricities and encounter geometries the manoeuvre direction that maximises the miss distance is obtained numerically as a function of the arc length separation between the manoeuvre point and the predicted collision point. The provided formulas can be used for high-accuracy instantaneous estimation of the outcome of a generic impulsive collision avoidance manoeuvre and its optimisation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    Although this condition is required for the present theoretical development, the analytical formulas here derived work also for the case of parallel velocities.

  2. 2.

    According to the present non-dimensionalisation that means the conjunction duration is small compared to the orbital period.

  3. 3.

    Typical collision avoidance manoeuvres involve velocity changes of the order of m/s, completely negligible when compared to their orbital velocity.

References

  1. Akella, M., Alfriend, K.: Probability of collision between space objects. J. Guid. Control Dyn. 23(5), 769–772 (2000)

    ADS  Article  Google Scholar 

  2. Alfano, S.: Aerospace support to space situational awareness. MIT Lincoln Laboratory Satellite Operations and Safety Workshop, Haystack Observatory, Chelmsford, Massachusetts (2002)

  3. Alfano, S.: Collision avoidance maneuver planning tool. In: 15th AAS/AIAA Astrodynamics Specialist Conference, pp. 7–11 (2005)

  4. Bombardelli, C, Baù, G.: Accurate analytical approximation of asteroid deflection with constant tangential thrust. Celest. Mech. Dyn. Astron. 114, 279–295 (2012)

    Google Scholar 

  5. Bombardelli, C., Bau, G., Pelaez, J.: Asymptotic solution for the two-body problem with constant tangential thrust acceleration. Celest. Mech. Dyn. Astron. 110(3), 239–256 (2011)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  6. Chan, F.K.: Spacecraft Collision Probability. Aerospace Press, Beijing (2008)

    Google Scholar 

  7. Chan, K.: Collision probability analyses for earth-orbiting satellites. In: 2001 Flight Mechanics, Symposium, vol 1 (2001)

  8. Conway, B.A.: Near-optimal deflection of earth-approaching asteroids. J. Guid. Control Dyn. 24(5), 1035–1037 (2001)

    ADS  Article  Google Scholar 

  9. COPUOS: Towards long-term sustainability of space activities: overcoming the challenge of space debris. Tech. rep., a/AC.105/C.1/2011/CRP.14. Committee on the Peaceful Uses of Outer Space. Available on line at http://www.oosa.unvienna.org (2011-02-08)

  10. Izzo, D.: Optimization of interplanetary trajectories for impulsive and continuous asteroid deflection. J. Guid. Control Dyn. 30(2), 401–408 (2007)

    ADS  Article  MathSciNet  Google Scholar 

  11. Kahle, R., Hahn, G., Kuhrt, E.: Optimal deflection of neos en route of collision with the earth. Icarus 182(2), 482–488 (2006)

    ADS  Article  Google Scholar 

  12. Kim, E.H., Kim, H.D., Kim, H.J.: Optimal solution of collision avoidance maneuver with multiple space debris. J. Space Oper. 9(3), 19–31 (2012)

    Google Scholar 

  13. Krag, H., Flohrer, T., Lemmens, S.: Consideration of space debris mitigation requirements in the operation of LEO missions. Paper 1257086. In: Proceedings of the 12th International Conference on Space Operations, Stockholm, 11-15 June 2012, AIAA (2012)

  14. Newman, K., Frigm, R., McKinley, D.: It’s not a big sky after all: justification for a close approach prediction and risk assessment process. Adv. Astronaut. Sci. 135(2), 1113–1132 (2009)

    Google Scholar 

  15. Patera, R.P.: General method for calculating satellite collision probability. J. Guid. Control Dyn. 24(4), 716–722 (2001)

    Google Scholar 

  16. Pelaez, J., Hedo, J., de Andres, P.: A special perturbation method in orbital dynamics. Celest. Mech. Dyn. Astron. 97(2), 131–150 (2007)

    ADS  Article  MATH  Google Scholar 

  17. Righetti, P., Sancho, F., Lazaro, D., Damiano, A.: Handling of conjunction warnings in eumetsat flight dynamics. J. Aerosp. Eng. 3(2), 39 (2011)

    Google Scholar 

  18. Sanchez-Ortiz, N., Grande-Olalla, I., Pulido, J.A., Merz, K.: Collision risk assessment and avoidance manoeuvres—the new coram tool for esa. In: 64 th International Astronautical Congress, Beijing, China (2013)

  19. Valsecchi, G., Milani, A., Gronchi, G., Chesley, S.: Resonant returns to close approaches: analytical theory. Astron. Astrophys. 408(3), 1179–1196 (2003)

    ADS  Article  Google Scholar 

  20. Vasile, M., Colombo, C.: Optimal impact strategies for asteroid deflection. J. Guid. Control Dyn. 31(4), 858–872 (2008)

    ADS  Article  Google Scholar 

  21. Yamanaka, K., Ankersen, F.: New state transition matrix for relative motion on an arbitrary elliptical orbit. J. Guid. Control Dyn. 25(1), 60–66 (2002)

    Google Scholar 

Download references

Acknowledgments

The study has been supported by the research project “Dynamic Simulation of Complex Space Systems” supported by the Dirección General de Investigación of the (no longer existing) Spanish Ministry of Science and Innovation through contract AYA2010-18796. The author would like to thank the two reviewers as well as Noelia Sánchez-Ortiz (Deimos Space) and Pierluigi Righetti (Eumetsat) for their useful suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Claudio Bombardelli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bombardelli, C. Analytical formulation of impulsive collision avoidance dynamics. Celest Mech Dyn Astr 118, 99–114 (2014). https://doi.org/10.1007/s10569-013-9526-3

Download citation

Keywords

  • Collision avoidance
  • Space debris
  • Perturbation theory
  • Orbit propagation
  • COLA manoeuvre
  • Relative dynamics
  • Iridium-Cosmos collision