Skip to main content
Log in

Planar collision-type dependence on incident angle and on friction coefficient

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This work addresses the ‘hard collision’ approach to the solution of planar, simple non-holonomic systems undergoing a one-point collision-with-friction problem, showing that (i) there are no coherent types of collision whereby forward sliding follows sticking, unless the initial relative tangential velocity of the colliding points vanishes; and (ii) the type of collision can be determined directly, given the collision angle of incidence \(\alpha\) and Coulomb’s coefficient of friction \(\mu\) between the colliding points. The classic hitting rod problem is used to illustrate the \(\alpha \)\(\mu\) collision-type dependence. Finally, the relation between collision with friction and tangential impact problems in multibody systems is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khulief, Y.A.: Modeling of impact in multibody systems: an overview. J. Comput. Nonlinear Dyn. 8(2), 021012 (2014)

    Article  Google Scholar 

  2. Keller, J.B.: Impact with friction. J. Appl. Mech. 53, 1–4 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lankarani, H.M.: A Poisson-based formulation for frictional impact analysis of multibody mechanical systems with open or closed kinematical chains. J. Mech. Des. 122, 489–497 (2000)

    Article  Google Scholar 

  4. Yao, W., Chen, B., Liu, C.: Energetic coefficient of restitution for planar impact in multi-rigid-body systems with friction. Int. J. Impact Eng. 31(3), 255–265 (2005)

    Article  Google Scholar 

  5. Djerassi, S.: Stronge’s hypothesis-based solution to the planar collision-with-friction problem. Multibody Syst. Dyn. 24(4), 493–515 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Stronge, W.: Smooth dynamics of oblique impacts with friction. Int. J. Impact Eng. 51, 36–49 (2013)

    Article  Google Scholar 

  7. Wang, Y., Mason, M.T.: Two-dimensional rigid-body collisions with friction. J. Appl. Mech. 59, 635–642 (1992)

    Article  MATH  Google Scholar 

  8. Genot, F., Borgliato, B.: New results on Painleve paradox. Eur. J. Mech. A, Solids 18, 653–677 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Or, Y., Rimon, E.: Investigation of Painleve paradox and dynamical jamming in mechanics. Nonlinear Dyn. 67, 1647–1668 (2012)

    Article  MATH  Google Scholar 

  10. Kane, T.R., Levinson, D.A.: Dynamics: Theory and Applications. McGraw-Hill, New York (1985)

    Google Scholar 

  11. Routh, E.J.: Dynamics of a System of Rigid Bodies, Elementary Part, 7th edn. Dover, New York (1905)

    MATH  Google Scholar 

  12. Painleve, P.: Sur les Lois du Frottement de Glissement. C. R. Séances Acad. Sci 121, 112–115 (1895), et 141 401–405, 546–552 (1905)

    MATH  Google Scholar 

  13. Leine, R.I., Borgliato, B., Nijmeijer, H.: Periodic motion and bifurcation induced by the Painleve paradox. Eur. J. Mech. A, Solids 21, 869–896 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhao, Z., Liu, C., Ma, W., Chen, B.: Experimental investigation of the Painleve paradox in a robotic system. J. Appl. Mech. 75(2), 041006 (2008)

    Article  Google Scholar 

  15. Poisson, S.D.: Mechanics. Longmans, London (1817)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shlomo Djerassi.

Appendix

Appendix

An algorithm for collision-type identification based upon Table 1: \(\text{Type}=\text{T}5\) unless

1

\(ghp > 0 \cup (\alpha /r_{m} < 1 \to T1\ \mbox{or}\ 1 < \alpha /r_{m} < 1 + e{}_{e} \to T2)\)

2

\(p < 0 \cup (\alpha /r_{m} < 1 \to T3\ \mbox{or}\ 1 < \alpha /r_{m} < 1 + e{}_{e} \to T4)\)

3

h<0→T1

An algorithm for collision-type identification based upon Fig. 3: \(\text{Type}=\text{T}5\) unless

1

\(\mu > |m_{nt}|/m_{tt} \cup (\alpha /r_{m} < 1 \to T1\ \mbox{or}\ 1 < \alpha /r_{m} < 1 + e{}_{e} \to T2)\)

2

\(m_{nt} < 0 \cup \mu < |m_{nt}|/m_{tt} \cup (\alpha /r_{m} < 1 \to T3 \ \mbox{or}\ 1 < \alpha /r_{m} < 1 + e{}_{e} \to T4)\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djerassi, S. Planar collision-type dependence on incident angle and on friction coefficient. Multibody Syst Dyn 37, 311–324 (2016). https://doi.org/10.1007/s11044-016-9505-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-016-9505-z

Keywords

Navigation