Skip to main content
Log in

On optimal two-impulse Earth–Moon transfers in a four-body model

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In this paper two-impulse Earth–Moon transfers are treated in the restricted four-body problem with the Sun, the Earth, and the Moon as primaries. The problem is formulated with mathematical means and solved through direct transcription and multiple shooting strategy. Thousands of solutions are found, which make it possible to frame known cases as special points of a more general picture. Families of solutions are defined and characterized, and their features are discussed. The methodology described in this paper is useful to perform trade-off analyses, where many solutions have to be produced and assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. http://moon.mit.edu/design.html, retrieved on 13 February 2012.

  2. The patched-conics solutions (Hohmann, bielliptic, and biparabolic) have been calculated by assuming the gravitational parameters of the Earth and Moon equal to \(3.986\times 10^{5}\,{\mathrm{km}}^{3}\mathrm{s}^{-2}\) and \(4.902\times 10^{3}\,{\mathrm{km}}^{3}\mathrm{s}^{-2}\), respectively.

  3. See Appendix 1 for the coordinate transformation behind (9) and (10).

References

  • Armellin, R., Di Lizia, P., Topputo, F., Lavagna, M., Bernelli-Zazzera, F., Berz, M.: Gravity assist space pruning based on differential algebra. Celest. Mech. Dyn. Astron. 106(1), 1–24 (2010). doi:10.1007/s10569-009-9235-0

    Article  ADS  MATH  Google Scholar 

  • Assadian, N., Pourtakdoust, S.H.: Multiobjective genetic optimization of Earth–Moon trajectories in the restricted four-body problem. Adv. Space Res. 45(3), 398–409 (2010)

    Article  ADS  Google Scholar 

  • Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. AIAA, New York (1987)

    MATH  Google Scholar 

  • Belbruno, E.: Lunar capture orbits, a method of constructing Earth–Moon trajectories and the lunar GAS mission. In: AIAA Paper 97–1054, Proceedings of the AIAA/DGLR/JSASS International Electric Propulsion Conference (1987)

  • Belbruno, E.: The dynamical mechanism of ballistic lunar capture transfers in the four-body problem from the perspective of invariant manifolds and Hill’s regions. In: Technical Report, Centre de Recerca Matematica, Barcelona, Spain (1994)

  • Belbruno, E.: Capture Dynamics and Chaotic Motions in Celestial Mechanics: With Applications to the Construction of Low Energy Transfers. Princeton University Press, Princeton (2004)

    Google Scholar 

  • Belbruno, E., Carrico, J.: Calculation of weak stability boundary ballistic lunar transfer trajectories. In: AIAA/AAS Astrodynamics Specialist Conference, Paper AIAA 2000–4142 (2000)

  • Belbruno, E., Miller, J.: Sun-perturbed Earth-to-Moon transfers with ballistic capture. J. Guid. Control Dyn. 16, 770–775 (1993)

    Article  ADS  Google Scholar 

  • Belbruno, E., Gidea, M., Topputo, F.: Weak stability boundary and invariant manifolds. SIAM J. Appl. Dyn. Syst. 9(3), 1061–1089 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Belbruno, E., Topputo, F., Gidea, M.: Resonance transition associated to weak capture in the restricted three-body problem. Adv. Space Res. 42(8), 18–39 (2008). doi:10.1016/j.asr.2008.01.018

    Article  Google Scholar 

  • Belló-Mora, M., Graziani, F., Teofilatto, P., Circi, C., Porfilio, M., Hechler, M.: A systematic analysis on weak stability boundary transfers to the Moon. In: Paper iaf-00-a.6.03, Proceedings of the 51st International Astronautical Conference (2000)

  • Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21, 193–207 (1998)

    Article  ADS  MATH  Google Scholar 

  • Biesbroek, R., Janin, G.: Ways to the Moon? ESA Bull. 103, 92–99 (2000)

    Google Scholar 

  • Bolt, E.M., Meiss, J.D.: Targeting chaotic orbits to the Moon through recurrence. Phys. Lett. A 204, 373–378 (1995)

    Article  ADS  Google Scholar 

  • Castelli, R.: Nonlinear Dynamics of Complex Systems: Applications in Physical, Biological and Financial Systems. Springer, New York (2011)

    Google Scholar 

  • Chung, M.J., Hatch, S.J., Kangas, J.A., Long, S.M., Roncoli, R.B., Sweetser, T.H.: Trans-lunar cruise trajectory design of GRAIL (gravity recovery and interior laboratory) mission. In: Paper AIAA 2010–8384, AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario, Canada, 2–5 August (2010)

  • Circi, C.: Properties of transit trajectory in the restricted three and four-body problem. Adv. Space Res. 49, 1506–1519 (2012)

    Article  ADS  Google Scholar 

  • Circi, C., Teofilatto, P.: On the dynamics of weak stability boundary lunar transfers. Celest. Mech. Dyn. Astron. 79(1), 41–72 (2001)

    Article  ADS  MATH  Google Scholar 

  • Circi, C., Teofilatto, P.: Weak stability boundary trajectories for the deployment of lunar spacecraft constellations. Celest. Mech. Dyn. Astron. 95(1), 371–390 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Conley, C.C.: Low energy transit orbits in the restricted three-body problem. SIAM J. Appl. Math. 16, 732–746 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  • Da Silva Fernandes, S., Marinho, C.M.P.: Sun influence on two-impulsive Earth-to-Moon transfers. In: Proceedings of the 22nd International Symposium on Space Flight Dynamics, Sao José dos Campos, Brazil, 28 Feb–4 March (2011)

  • De Melo, C.F., Winter, O.C.: Alternative paths to Earth–Moon transfer. Math. Probl. Eng. 2006, 1–20 (2006)

    Google Scholar 

  • Enright, P.J., Conway, B.A.: Discrete approximations to optimal trajectories using direct transcription and nonlinear programming. J. Guid. Control Dyn. 15, 994–1002 (1992)

    Article  ADS  MATH  Google Scholar 

  • Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic, London (1981)

    MATH  Google Scholar 

  • Gómez, G., Koon, W.S., Lo, M.W., Marsden, J.E., Masdemont, J., Ross, S.D.: Invariant manifolds, the spatial three-body problem and space mission design. Adv. Astronaut. Sci. 109(1), 3–22 (2001)

    Google Scholar 

  • Hatch, S.J., Roncoli, R.B., Sweetser, T.H.: Trans-lunar cruise trajectory design of GRAIL (Gravity Recovery and Interior Laboratory) Mission. In: Paper AIAA 2010–8385, AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario, Canada, 2–5 august, (2010).

  • Hoffman, T. L.: GRAIL: gravity mapping the Moon. In: IEEE Aerospace Conference, Big Sky, Montana, USA, 7–14 March 2009, 1–8. IEEE (2009)

  • Hyeraci, N., Topputo, F.: Method to design ballistic capture in the elliptic restricted three-body problem. J. Guid. Control Dyn. 33(6), 1814–1823 (2010)

    Article  ADS  Google Scholar 

  • Hyeraci, N., Topputo, F.: The role of true anomaly in ballistic capture. Celest. Mech. Dyn. Astron. 116(2), 175–193 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  • Ivashkin, V.V.: On trajectories of Earth–Moon flight of a particle with its temporary capture by the Moon. Dokl. Phys. 47(11), 196–199 (2002)

    Article  MathSciNet  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Shoot the Moon. In: AAS/AIAA Astrodynamics Specialist Conference, Paper AAS 00–166 (2000)

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Low energy transfer to the Moon. Celest. Mech. Dyn. Astron. 81, 63–73 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Macau, E.E.N.: Using chaos to guide a spacecraft to the Moon. Acta Astronaut. 47, 871–878 (2000)

    Article  ADS  Google Scholar 

  • Mengali, G., Quarta, A.: Optimization of biimpulsive trajectories in the Earth–Moon restricted three-body system. J. Guid. Control Dyn. 28, 209–216 (2005)

    Article  ADS  Google Scholar 

  • Miele, A., Mancuso, S.: Optimal trajectories for Earth–Moon–Earth flight. Acta Astronaut. 49(2), 59–71 (2001)

    Article  ADS  Google Scholar 

  • Mingotti, G., Topputo, F.: Ways to the Moon: a survey. In: Paper AAS 11–283, 21th AAS/AIAA Space Flight Mechanics Meeting, New Orleans, USA, 13–17 February (2011)

  • Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: Low-energy, low-thrust transfers to the Moon. Celest. Mech. Dyn. Astron. 105(1–3), 61–74 (2009a). doi:10.1007/s10569-009-9220-7

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: Numerical methods to design low-energy, low-thrust Sun-perturbed transfers to the Moon. In: Proceedings of the 49th Israel Annual Conference on Aerospace Sciences, Tel Aviv, Haifa, Israel (2009b)

  • Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: Earth–Mars transfers with ballistic escape and low-thrust capture. Celest. Mech. Dyn. Astron. 110(2), 169–188 (2011a). doi:10.1007/s10569-011-9343-5

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: Optimal low-thrust invariant manifold trajectories via attainable sets. J. Guid. Control Dyn. 34(6), 1644–1656 (2011b). doi:10.1007/s10569-011-9343-5

    Article  ADS  Google Scholar 

  • Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: Efficient invariant-manifold, low-thrust planar trajectories to the Moon. Commun. Nonlinear Sci. Numer. Simul. 17(2), 817–831 (2012). doi:10.1016/j.cnsns.2011.06.033

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Parker, J.S.: Families of low-energy lunar halo transfers. In: Paper AAS 06–132, AAS/AIAA Spaceflight Mechanics Conference, Tampa, FL, USA, 22–26 Jan (2006)

  • Parker, J.S., Anderson, R.L.: Targeting low-energy transfers to low lunar orbit. In: AIAA/AAS Astrodynamics Specialist Conference, Girdwood, Alaska, USA, 31 July–4 August (2011)

  • Parker, J.S., Lo, M.W.: Shoot the Moon 3D. Adv. Astronaut. Sci. 123, 2067–2086 (2006)

    Google Scholar 

  • Parker, J.S., Anderson, R.L., Peterson, A.: A survey of ballistic transfers to low lunar orbit. In: Advances in the Astronautical Sciences, Proceedings of the 21st AAS/AIAA Space Flight Mechanics Meeting, New Orleans, USA, 13–17 Feb, 2011, vol. 140, pp. 2481–2500. Univelt, Inc. (2011)

  • Peng, L., Wang, Y., Dai, G., Chang, Y., Chen, F.: Optimization of the Earth–Moon low energy transfer with differential evolution based on uniform design. In: IEEE Congress on Evolutionary Computation, Barcelona, Spain, 18–23 July, 2010, 1–8. IEEE (2010). doi:10.1109/CEC.2010.5586384

  • Pernicka, H.J., Scarberry, D.P., Marsh, S.M., Sweetser, T.H.: A search for low \({\varDelta }v\) Earth-to-Moon trajectories. J. Astronaut. Sci. 43, 77–88 (1995)

    Google Scholar 

  • Perozzi, E., Di Salvo, A.: Novel spaceways for reaching the Moon: an assessment for exploration. Celest. Mech. Dyn. Astron. 102(1), 207–218 (2008)

    Article  ADS  MATH  Google Scholar 

  • Roncoli, R.B., Fujii, K.K.: Mission design overview for the gravity recovery and interior laboratory (GRAIL) mission. In: Paper AIAA 2010–8383, AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario, Canada, 2–5 August (2010)

  • Ross, S.D.: Trade-off between fuel and time optimization. In: Proceeding of the New Trends in Astrodynamics and Applications (2003)

  • Schoenmaekers, J., Horas, D., Pulido, J.A.: SMART-1: with solar electric propulsion to the Moon. In: Proceeding of the 16th International Symposium on Space Flight, Dynamics (2001)

  • Schroer, C.G., Ott, E.: Targeting in hamiltonian systems that have mixed regular/chaotic phase spaces. Chaos 7, 512–519 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Shampine, L.F., Gordon, M.K.: Computer Solution of Ordinary Differential Equations: The Initial Value Problem. W.H. Freeman, San Francisco (1975)

    MATH  Google Scholar 

  • Simó, C., Gómez, G., Jorba, Á., Masdemont, J.: The Bicircular Model Near the Triangular Libration Points of the RTBP. From Newton to Chaos. Plenum Press, New York (1995)

    Google Scholar 

  • Sweetser, T.H.: An estimate of the global minimum \({\varDelta }v\) needed for Earth–Moon transfer. Adv. Astronaut. Sci. 75, 111–120 (1991)

    Google Scholar 

  • Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic, San Diego (1967)

    Google Scholar 

  • Topputo, F., Belbruno, E.: Computation of weak stability boundaries: Sun–Jupiter system. Celest. Mech. Dyn. Astron. 105(1–3), 3–17 (2009). doi:10.1007/s10569-009-9222-5

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Topputo, F., Belbruno, E., Gidea, M.: Resonant motion, ballistic escape, and their applications in astrodynamics. Adv. Space Res. 42(8), 6–17 (2008). doi:10.1016/j.asr.2008.01.017

    Article  Google Scholar 

  • Topputo, F., Vasile, M., Bernelli-Zazzera, F.: Earth-to-Moon low energy transfers targeting \(L_1\) hyperbolic transit orbits. Ann. N.Y. Acad. Sci. 1065, 55–76 (2005a)

    Article  ADS  Google Scholar 

  • Topputo, F., Vasile, M., Bernelli-Zazzera, F.: Low energy interplanetary transfers exploiting invariant manifolds of the restricted three-body problem. J. Astronaut. Sci. 53(4), 353–372 (2005b)

    MathSciNet  Google Scholar 

  • Winter, O.C., Vieira Neto, E., Prado, A.F.B.A.: Orbital maneuvers using gravitational capture times. Adv. Space Res. 31(8), 2005–2010 (2003)

    Article  ADS  Google Scholar 

  • Yagasaki, K.: Computation of low energy Earth-to-Moon transfers with moderate flight time. Physica D 197(3–4), 313–331 (2004a)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Yagasaki, K.: Sun-perturbed Earth-to-Moon transfers with low energy and moderate flight time. Celest. Mech. Dyn. Astron. 90, 197–212 (2004b)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Yamakawa, H., Kawaguchi, J., Ishii, N., Matsuo, H.: A numerical study of gravitational capture orbit in the Earth–Moon system. In: Spaceflight Mechanics 1992; Proceedings of the 2nd AAS/AIAA Meeting, Colorado Springs, CO, Feb 24–26, pp. 1113–1132 (1992)

  • Yamakawa, H., Kawaguchi, J., Ishii, N., Matsuo, H.: On Earth–Moon transfer trajectory with gravitational capture. Adv. Astronaut. Sci. 85, 397–397 (1993)

    Google Scholar 

Download references

Acknowledgments

The author is grateful to Pierluigi Di Lizia, Alexander Wittig, and Koen Geurts for having proof-read the paper, to Mauro Massari and Franco Bernelli-Zazzera for having shared their workstations, and to Roberto Armellin for the computation of the Pareto-efficient solutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Topputo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 53 KB)

Appendices

Appendix 1

An orbit in the rotating frame, \(\varvec{x}(t) = \{x(t), y(t), \dot{x}(t), \dot{y}(t)\}\), is converted to an orbit expressed in the \(P_1\)-centered (or Earth-centered), inertial frame, \(\varvec{X}_1(t) = \{X_1(t), Y_1(t), \dot{X}_1(t), \dot{Y}_1(t)\}\), through

$$\begin{aligned}&X_1(t) = (x(t)+\mu ) \cos t - y(t) \sin t \nonumber \\&Y_1(t) = (x(t)+\mu ) \sin t + y(t) \cos t \nonumber \\&\dot{X}_1(t) = (\dot{x}(t)-y(t)) \cos t - (\dot{y}(t)+x(t)+\mu ) \sin t \nonumber \\&\dot{Y}_1(t) = (\dot{x}(t)-y(t)) \sin t + (\dot{y}(t)+x(t)+\mu ) \cos t \end{aligned}$$
(34)

where \(t\) is the present, scaled time. The transformation into the \(P_2\)-centered (i.e. Moon-centered), inertial frame is obtained from (34) by replacing ‘\(\mu \)’ with ‘\(\mu -1\)’.

Appendix 2

The figures corresponding to the solutions characterized in Sect. 5 are reported below (see Figs. 24, 25, 26).

Fig. 24
figure 24

Negative solution samples belonging to family \(a\) and \(b\) in the Earth-centered inertial frame. (left) Family \(a^-\); (right) Family \(b^-\)

Fig. 25
figure 25

Negative solution samples belonging to family \(c\) in the Earth-centered inertial frame. (left) Solutions \(c_1^-, c_2^-, c_4^-\); (right) \(c_3^-, c_5^-\)

Fig. 26
figure 26

Sample solutions (top-left) \(f_1^+\); (top-right) \(h_3^-\); (center-left) \(m_2^+\); (center-right) \(p_5^-\); (bottom row) \(q_2^+\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Topputo, F. On optimal two-impulse Earth–Moon transfers in a four-body model. Celest Mech Dyn Astr 117, 279–313 (2013). https://doi.org/10.1007/s10569-013-9513-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-013-9513-8

Keywords

Navigation