Skip to main content
Log in

Orbit classification in the meridional plane of a disk galaxy model with a spherical nucleus

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We investigate the regular or chaotic nature of star orbits moving in the meridional plane of an axially symmetric galactic model with a disk and a spherical nucleus. We study the influence of some important parameters of the dynamical system, such as the mass and the scale length of the nucleus, the angular momentum or the energy, by computing in each case the percentage of chaotic orbits, as well as the percentages of orbits of the main regular resonant families. Some heuristic arguments to explain and justify the numerically derived outcomes are also given. Furthermore, we present a new method to find the threshold between chaos and regularity for both Lyapunov Characteristic Numbers and SALI, by using them simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. We adhere to the recommended IAU symbol for year, i.e., “a” (Wilkins 1989).

  2. A regular orbit of a \(N\)-dimensional potential obeys, by definition, \(N\) or more isolating integrals of motion. On the other hand, a chaotic orbit is defined through its sensitivity to the initial conditions in phase space: if the initial conditions of the orbit are infinitesimally displaced, then the distance between the original orbit and the new orbit grows exponentially with time. These definitions do not complement each other. Whereas it can be proved that a regular orbit is not chaotic and a chaotic orbit is not regular (e.g., Jackson 1991 Section 8.3), as far as we know it has not been proved that every irregular (i.e. not regular) orbit is chaotic, or, in other words, that every orbit obeying less than \(N\) isolating integrals has sensitivity to the initial conditions. Nevertheless, to avoid confusion, we will follow here the widespread convention of considering irregular orbits and chaotic orbits as the same set.

References

  • Allen, C., Santillán, A.: An improved model of the galactic mass distribution for orbit computations. Rev. Mex. Astron. Astrof. 22, 255–263 (1991)

    ADS  Google Scholar 

  • Bennetin, G., Galgani, G., Giorgilli, A., Strelcyn, J.M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: theory; Part 2: numerical applications. Meccanica 15(9–20), 21–30 (1980)

    Google Scholar 

  • Binney, J., Spergel, D.: Spectral stellar dynamics. Astrophys. J. 252, 308–321 (1982)

    Article  ADS  Google Scholar 

  • Binney, J., Spergel, D.: Spectral stellar dynamics. II—the action integrals. Mon. Not. R. Astron. Soc. 206, 159–177 (1984)

    ADS  Google Scholar 

  • Binney, J., Tremaine, S.: Galactic Dynamics. Princeton Univ. Press, Princeton (2008)

    MATH  Google Scholar 

  • Caranicolas, N., Vozikis, Ch.: Orbital characteristics of dynamical models of elliptical galaxies. Celest. Mech. 39, 85–102 (1986)

    Article  ADS  MATH  Google Scholar 

  • Carpintero, D.D., Aguilar, L.A.: Orbit classification in arbitrary 2D and 3D potentials. Mon. Not. R. Astron. Soc. 298, 1–21 (1998)

    Article  ADS  Google Scholar 

  • Contopoulos, G.: In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, p. 1–17. doi:10.1007/BFb0021732 (1979)

  • Contopoulos, G.: A third integral of motion in a galaxy. Z. Astroph. 49, 273–291 (1960)

    MathSciNet  ADS  MATH  Google Scholar 

  • Copin, Y., Zhao, H., de Zeeuw, P.: Probing a regular orbit with spectral dynamics. Mon. Not. R. Astron. Soc. 318, 781–797 (2000)

    Article  ADS  Google Scholar 

  • Gerhard, O., Binney, J.: Triaxial galaxies containing massive black holes or central density cusps. Mon. Not. R. Astron. Soc. 216, 467–502 (1985)

    ADS  Google Scholar 

  • Gerhard, O., Saha, P.: Recovering galactic orbits by perturbation theory. Mon. Not. R. Astron. Soc. 251, 449–467 (1991)

    ADS  MATH  Google Scholar 

  • Gómez, F., Helmi, A., Brown, A.G.A., Li, Y.-S.: On the identification of merger debris in the Gaia era. Mon. Not. R. Astron. Soc. 408, 935–946 (2010)

    Article  ADS  Google Scholar 

  • Greiner, J.: A new kind of stellar orbit in a galactic potential. Celest. Mech. 40, 171–175 (1987)

    Article  ADS  Google Scholar 

  • Greiner, J.: Higher order resonant orbits. Celest. Mech. Dyn. Astron. 50, 387–394 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  • Hasan, H., Norman, C.A.: Chaotic orbits in barred galaxies with central mass concentrations. Astrophys. J. 361, 69–77 (1990)

    Article  ADS  Google Scholar 

  • Hasan, H., Pfenniger, D., Norman, C.: Galactic bars with central mass concentrations—three-dimensional dynamics. Astrophys. J. 409, 91–109 (1993)

    Article  ADS  Google Scholar 

  • Irrgang, A., Wilcox, B., Tucker, E., Schiefelbein, L.: Milky way mass models for orbit calculations. Astron. Astrophys. 549, A137 (2013)

    Article  ADS  Google Scholar 

  • Jackson, E.A.: Perspectives of Nonlinear Dynamics. Cambridge Univ. Press, Cambridge (1991)

    MATH  Google Scholar 

  • Kalapotharakos, C., Voglis, N.: Global dynamics in self-consistent models of elliptical galaxies. Celest. Mech. Dyn. Astron. 92, 157–188 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Karanis, G.I., Caranicolas, N.D.: Transition from regular motion to chaos in a logarithmic potential. Astron. Astrophys. 367, 443–448 (2001)

    Article  ADS  Google Scholar 

  • Laskar, J.: Secular evolution of the solar system over 10 million years. Astron. Astrophys. 198, 341–362 (1988)

    ADS  Google Scholar 

  • Laskar, J.: Frequency analysis for multi-dimensional systems. Global dynamics and diffusion. Phys. D 67, 257–281 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Lees, J.F., Schwarzschild, M.: The orbital structure of galactic halos. Astrophys. J. 384, 491–501 (1992)

    Article  ADS  Google Scholar 

  • Manabe, S.: Applicability of approximate third integral of motion for stellar orbits in the galaxy. Publ. Astron. Soc. Japan 31, 369–394 (1979)

    ADS  Google Scholar 

  • Manos, T., Skokos, Ch., Athanassoula, E., Bountis, T.: Studying the global dynamics of conservative dynamical systems using the SALI chaos detection method. Nonlinear Phenom. Complex Syst. 11, 171–176 (2008)

    MathSciNet  Google Scholar 

  • Manos, T., Athanassoula, E.: Regular and chaotic orbits in barred galaxies—I. Applying the SALI/GALI method to explore their distribution in several models. Mon. Not. R. Astron. Soc. 415, 629–642 (2011)

    Article  ADS  Google Scholar 

  • Martinet, L., Mayer, F.: Galactic orbits and integrals of motion for stars of old galactic populations. III—conclusions and applications. Astron. Astrophys. 44, 45–57 (1975)

    ADS  Google Scholar 

  • Meyer, K.R., Hall, G.R.: Introduction to Hamiltonian Dynamical Systems and the N-body Problem. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  • Miyamoto, M., Nagai, R.: Three-dimensional models for the distribution of mass in galaxies. Publ. Astron. Soc. Jpn. 27, 533–543 (1975)

    ADS  Google Scholar 

  • Ollongren, A.: Theory of stellar orbits in the galaxy. Ann. Rev. Astron. Astrophys. 3, 113–134 (1965)

    Article  ADS  Google Scholar 

  • Ollongren, A.: Construction of galactic stellar orbits similar to harmonic oscillators. Astron. J. 72, 436–442 (1967)

    Article  ADS  Google Scholar 

  • Press, H.P., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in FORTRAN 77, 2nd edn. Cambridge Univ. Press, Cambridge (1992)

    Google Scholar 

  • Šidlichovský, M., Nesvorný, D.: Frequency modified Fourier transform and its applications to asteroids. Celest. Mech. Dyn. Astron. 65, 137–148 (1996)

    Article  ADS  Google Scholar 

  • Skokos, Ch., Antonopoulos, Ch., Bountis, T.C., Vrahatis, M.N.: Detecting order and chaos in Hamiltonian systems by the SALI method. J. Phys. A: Math. Gen. 37, 6269–6284 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  • Szydlowski, M.: Curvature of gravitationally bound mechanical systems. J. Math. Phys. 35, 1850–1880 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Wilkins, G.A.: The IAU Style Manual, in IAU Transactions XXB, p. S23 (1989)

  • Zotos, E.E.: Trapped and escaping orbits in an axially symmetric galactic-type potential. Publ. Astron. Soc. Aust. 29, 161–173 (2012a)

    Google Scholar 

  • Zotos, E.E.: Exploring the nature of orbits in a galactic model with a massive nucleus. New Astron. 17, 576–588 (2012b)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referee for the careful reading of the manuscript and for all the aptly suggestions and comments which allowed us to improve both the quality and the clarity of our work. This work was supported with grants from the Universidad Nacional de La Plata (Argentina), the Consejo Nacional de Investigaciones Cientí ficas y Técnicas de la República Argentina, and the Agencia Nacional de Promoción Científica y Tecnológica (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euaggelos E. Zotos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zotos, E.E., Carpintero, D.D. Orbit classification in the meridional plane of a disk galaxy model with a spherical nucleus. Celest Mech Dyn Astr 116, 417–438 (2013). https://doi.org/10.1007/s10569-013-9500-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-013-9500-0

Keywords

Navigation