Skip to main content
Log in

Long term stability of Earth Trojans

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We explore the long-term stability of Earth Trojans by using a chaos indicator, the Frequency Map Analysis. We find that there is an extended stability region at low eccentricity and for inclinations lower than about \(50^{\circ }\) even if the most stable orbits are found at \(i \le 40^{\circ }\). This region is not limited in libration amplitude, contrary to what found for Trojan orbits around outer planets. We also investigate how the stability properties are affected by the tidal force of the Earth–Moon system and by the Yarkovsky force. The tidal field of the Earth–Moon system reduces the stability of the Earth Trojans at high inclinations while the Yarkovsky force, at least for bodies larger than 10 m in diameter, does not seem to strongly influence the long-term stability. Earth Trojan orbits with the lowest diffusion rate survive on timescales of the order of \(10^9\) years but their evolution is chaotic. Their behaviour is similar to that of Mars Trojans even if Earth Trojans appear to have shorter lifetimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bottke, W.F. Jr., Vokrouhlický, D., Rubincam, D.P., Broz, M.: The effect of Yarkovsky thermal forces on the dynamical evolution of asteroids and meteoroids. Asteroids III, 395–408 (2002)

  • Connors, M., Wiegert, P., Veillet, C.: Earth’s Trojan asteroid. Nature 475, 481–483 (2011)

    Article  ADS  Google Scholar 

  • \({\acute{\rm C}}\)uk, M., Hamilton, D., Holman, M.: Long-term stability of horseshoe orbits. MNRAS 426, 3051–3056 (2012)

  • Dvorak, R., Lhotka, C., Zhou, L.: The orbit of 2010 TK7: possible regions of stability for other Earth Trojan asteroids. Astron. Astrophys. 541, A127 (2012)

    Article  ADS  Google Scholar 

  • Érdi, B.: Long periodic perturbations of Trojan asteroids. Celes. Mech. 43, 303–308 (1987)

    Article  ADS  Google Scholar 

  • Laskar, J.: The chaotic motion of the solar system—a numerical estimate of the size of the chaotic zones. Icarus 88, 266–291 (1990)

    Article  ADS  Google Scholar 

  • Levison, H.F., Duncan, M.J.: The long-term dynamical behavior of short-period comets. Icarus 108, 18–36 (1994)

    Article  ADS  Google Scholar 

  • Mainzer, A., Grav, T., Masiero, J., Bauer, J., Cutri, R.M., McMillan, R.S., Nugent, C.R., Tholen, D., Walker, R., Wright, E.L.: Physical parameters of asteroids estimated from the WISE 3-band data and NEOWISE post-cryogenic survey. ApJL 760, L12 (2012)

  • Marzari, F., Tricarico, P., Scholl, H.: Saturn Trojans: stability regions in the phase space. ApJ 579, 905–913 (2002)

    Article  ADS  Google Scholar 

  • Marzari, F., Tricarico, P., Scholl, H.: Stability of Jupiter Trojans investigated using frequency map analysis: the MATROS project. MNRAS 345, 1091–1100 (2003)

    Article  ADS  Google Scholar 

  • Mikkola, S., Innanen, K.A.: Studies on solar system dynamics. II—the stability of earth’s Trojans. AJ 100, 290–293 (1990)

    Article  ADS  Google Scholar 

  • Milani, A.: The Trojan asteroid belt: proper elements, stability, chaos and families. Celes. Mech. Dyn. Astron. 57, 59–94 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  • Nesvorný, D., Morbidelli, A., Vokrouhlický, D., Bottke, W.F., Brož, M.: The flora family: a case of the dynamically dispersed collisional swarm? Icarus 157, 155–172 (2002)

    Article  ADS  Google Scholar 

  • Robutel, P., Gabern, F.: The resonant structure of Jupiter’s Trojan asteroids—I. Long-term stability and diffusion. MNRAS 372, 1463–1482 (2006)

    Article  ADS  Google Scholar 

  • Scholl, H., Marzari, F., Tricarico, P.: Dynamics of Mars Trojans. Icarus 175, 397–408 (2005)

    Article  ADS  Google Scholar 

  • Schwarz, R., Dvorak, R.: Trojan capture by terrestrial planets. Celes. Mech. Dyn. Astron. 113, 23–34 (2012)

    Article  ADS  Google Scholar 

  • Šidlichovský, M., Nesvorný, D.: Frequency modified Fourier transform and its applications to asteroids. Celes. Mech. Dyn. Astron. 65, 137–148 (1996)

    Article  ADS  Google Scholar 

  • Tabachnik, S.A., Evans, N.W.: Asteroids in the inner solar system—I. Existence. MNRAS 319, 63–79 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Matija Ćuk and an anonymous referee for useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Marzari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marzari, F., Scholl, H. Long term stability of Earth Trojans. Celest Mech Dyn Astr 117, 91–100 (2013). https://doi.org/10.1007/s10569-013-9478-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-013-9478-7

Keywords

Navigation