Skip to main content
Log in

Detection of separatrices and chaotic seas based on orbit amplitudes

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The maximum eccentricity method (MEM, (Dvorak et al. in Astron Astrophys 426(2):L37–L40, 2004)) is a standard tool for the analysis of planetary systems and their stability. The method amounts to estimating the maximal stretch of orbits over sampled domains of initial conditions. The present paper leverages on the MEM to introduce a sharp detector of separatrices and chaotic seas. After introducing the MEM analogue for nearly-integrable action-angle Hamiltonians, i.e., diameters, we use low-dimensional dynamical systems with multi-resonant modes and junctions, supporting chaotic motions, to recognise the drivers of the diameter metric. Once this is appreciated, we present a second-derivative-based index measuring the regularity of this application. This quantity turns to be a sensitive and robust indicator to detect separatrices, resonant webs and chaotic seas. We discuss practical applications of this framework in the context of N-body simulations for the planetary case affected by mean-motion resonances, and demonstrate the ability of the index to distinguish minute structures of the phase space, otherwise undetected with the original MEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Confer The Extrasolar Planets Encyclopaedia, http://exoplanet.eu (Schneider et al. 2011).

  2. The LD framework does not rely exclusively on the euclidean norm. In this respect, p-norm like LDs (Lopesino et al. 2015), LDs based on the actions in the context of Hamiltonians framework (García-Garrido and Wiggins 2022), or time-free geometrical LDs for integrable problems (Pédenon-Orlanducci et al 2022) have been considered in several instances.

  3. We shall not consider here blowing-up trajectories in finite-time. We thus assume to deal with bounded observables, leading to a finite diameter D. In the N-body simulations of Sect. 4, escapes in finite time are not excluded. Nevertheless, we bypass this problem by using conditional exit loops during the numerical treatment of the equation of motions. This prevents the issue to happen. Equivalently, it amounts in some cases to consider the final time variable as a function of the initial datum, \(t=t(I_{0},\phi _{0})\).

  4. Interestingly enough, we shall underline that similar definitions based on amplitudes in certain direction found applications in fluid mechanics for characterising mixing properties, see Mundel et al. (2014).

  5. Note that Eqs. (1) and (2) are not based directly on actions, yet, the metrical orbital elements (aei) are simple function of proper actions such as the Delaunay elements (LGH), for example. Thus, large variations in a are equivalent to large variations in \(L=\sqrt{\mu a}\), and, in the secular approximation where L is a first integral, large variations in e are equivalent to large variations in \(G=L\sqrt{1-e^{2}}\).

References

  • Alessi, E., Deleflie, F., Rosengren, A., Rossi, A., Valsecchi, G., Daquin, J., Merz, K.: A numerical investigation on the eccentricity growth of GNSS disposal orbits. Celest. Mech. Dyn. Astron. 125(1), 71–90 (2016)

    ADS  Google Scholar 

  • Alessi, E.M., Schettino, G., Rossi, A., Valsecchi, G.B.: Natural highways for end-of-life solutions in the LEO region. Celest. Mech. Dyn. Astron. 130(5), 1–22 (2018)

    Google Scholar 

  • Alves Silva, R., Beauge, C., Ferraz-Mello, S., Cincotta, PM., Giordano, CM.: Instability times in the HD 181433 exoplanetary system. Astronomy & Astrophysics (2021)

  • Barrio, R.: Sensitivity tools vs. Poincaré sections. Chaos, Solit. Fract. 25(3), 711–726 (2005)

  • Beaugé, C., Nesvornỳ, D.: Multiple-planet scattering and the origin of hot Jupiters. Astrophys. J. 751(2), 119 (2012)

    ADS  Google Scholar 

  • Celletti, A., Karampotsiou, E., Lhotka, C., Pucacco, G., Volpi, M.: Laplace-like resonances with tidal effects. Astron. Astrophys. 655, A94 (2021)

    ADS  MATH  Google Scholar 

  • Charalambous, C., Marti, J.G., Beauge, C., Ramos, X.S.: Resonance capture and dynamics of three-planet systems. Mon. Not. R. Astron. Soc. 477(1), 1414–1425 (2018)

    ADS  Google Scholar 

  • Charalambous, C., Giuppone, C., Guilera, O.: Web of resonances and possible path of evolution of the small Uranian satellites. Astrophys. Space Sci. 367(5), 1–15 (2022)

    MathSciNet  Google Scholar 

  • Chirikov, B.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52(5), 263–379 (1979)

    ADS  MathSciNet  Google Scholar 

  • Cincotta, P.M., Giordano, C.M., Simó, C.: Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits. Physica. D 182(3–4), 151–178 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  • Colombo, C., Gkolias, I.: Analysis of orbit stability in the geosynchronous region for end-of-life disposal. In: 7th European Conference on Space Debris, pp. 1–14. ESA/ESOC, ESA (2017)

  • Craven, G.T., Hernandez, R.: Lagrangian descriptors of thermalized transition states on time-varying energy surfaces. Phys. Rev. Lett. 115(14), 148301 (2015)

    ADS  Google Scholar 

  • Curbelo, J., Mechoso, C.R., Mancho, A.M., Wiggins, S.: Lagrangian study of the final warming in the Southern Stratosphere during 2002: part I. The vortex splitting at upper levels. Clim. Dyn. 53(5), 2779–2792 (2019)

  • Curbelo, J., Mechoso, C.R., Mancho, A.M., Wiggins, S.: Lagrangian study of the final warming in the Southern Stratosphere during 2002: Part II. 3d structure. Clim. Dyn. 53(3), 1277–1286 (2019)

  • Daquin, J., Gkolias, I., Rosengren, A.J.: Drift and its mediation in terrestrial orbits. Front. Appl. Math. Stat. 4, 35 (2018)

    Google Scholar 

  • Daquin, J., Pedenon-Orlanducci, M., Agaoglou, M., Garcia-Sanchez, G., Mancho, M.A.: Global dynamics visualisation from Lagrangian Descriptors Applications to discrete and continuous systems. Physica D Nonlinear Phenomena 442, 133520 (2022). https://doi.org/10.1016/j.physd.2022

    Article  MathSciNet  MATH  Google Scholar 

  • Dvorak, R., Pilat-Lohinger, E., Schwarz, R., Freistetter, F.: Extrasolar Trojan planets close to habitable zones. Astron. Astrophys. 426(2), L37–L40 (2004)

    ADS  Google Scholar 

  • Elskens, Y., Escande, D.: Infinite resonance overlap: a natural limit for Hamiltonian chaos. Physica D 62(1–4), 66–74 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  • Escande, D.F., Doveil, F.: Renormalization method for computing the threshold of the large-scale stochastic instability in two degrees of freedom hamiltonian systems. J. Stat. Phys. 26(2), 257–284 (1981)

    ADS  MathSciNet  Google Scholar 

  • Feldmaier, M., Junginger, A., Main, J., Wunner, G., Hernandez, R.: Obtaining time-dependent multi-dimensional dividing surfaces using Lagrangian descriptors. Chem. Phys. Lett. 687, 194–199 (2017)

    ADS  Google Scholar 

  • Ferrari, F., Alessi, E.: A new method for identifying dynamical transitions in rubble-pile asteroid scenarios. Astron. Astrophys. (2023). https://doi.org/10.1051/0004-6361/202244540

    Article  Google Scholar 

  • Fouchard, M., Lega, E., Froeschlé, C., Froeschlé, C.: On the relationship between fast lyapunov indicator and periodic orbits for continuous flows. In: Modern Celestial Mechanics: From Theory to Applications, Springer, pp. 205–222 (2002)

  • Froeschlé, C., Lega, E., Gonczi, R.: Fast Lyapunov indicators. Application to asteroidal motion. Celest. Mech. Dyn. Astron. 67(1), 41–62 (1997)

  • Gallardo, T., Coito, L., Badano, L.: Planetary and satellite three body mean motion resonances. Icarus 274, 83–98 (2016)

    ADS  Google Scholar 

  • García-Garrido, V.J., Wiggins, S.: Lagrangian descriptors and the action integral of classical mechanics. Physica D 434, 133206 (2022)

    MathSciNet  MATH  Google Scholar 

  • Gillon, M., Triaud, A.H., Demory, B.O., Jehin, E., Agol, E., Deck, K.M., Lederer, S.M., De Wit, J., Burdanov, A., Ingalls, J.G., et al.: Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542(7642), 456–460 (2017)

    ADS  Google Scholar 

  • Giuppone, C., Benítez-Llambay, P., Beaugé, C.: Origin and detectability of co-orbital planets from radial velocity data. Mon. Not. R. Astron. Soc. 421(1), 356–368 (2012)

    ADS  Google Scholar 

  • Gkolias, I., Daquin, J., Gachet, F., Rosengren, A.J.: From order to chaos in Earth satellite orbits. Astron. J. 152(5), 119 (2016)

    ADS  Google Scholar 

  • Guillery, N., Meiss, J.D.: Diffusion and drift in volume-preserving maps. Regular Chaot. Dyn. 22(6), 700–720 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  • Guzzo, M., Lega, E.: Evolution of the tangent vectors and localization of the stable and unstable manifolds of hyperbolic orbits by Fast Lyapunov Indicators. SIAM J. Appl. Math. 74(4), 1058–1086 (2014)

    MathSciNet  MATH  Google Scholar 

  • Hadden, S.: An integrable model for the dynamics of planetary mean-motion resonances. Astron. J. 158(6), 238 (2019)

    ADS  Google Scholar 

  • Hadden, S., Payne, M.J.: Modeling radial velocity data of resonant planets to infer migration histories. Astron. J. 160(3), 106 (2020)

    ADS  Google Scholar 

  • Henrard, J., Lemaitre, A.: A second fundamental model for resonance. Celest. Mech. 30(2), 197–218 (1983)

    ADS  MathSciNet  MATH  Google Scholar 

  • Hillebrand, M., Zimper, S., Ngapasare, A., Katsanikas, M., Wiggins, S., Skokos, C.: Quantifying chaos using Lagrangian descriptors. Chaos Interdiscipl. J. Nonlinear Sci. 32(12), 123122 (2022)

    MathSciNet  Google Scholar 

  • Junginger, A., Duvenbeck, L., Feldmaier, M., Main, J., Wunner, G., Hernandez, R.: Chemical dynamics between wells across a time-dependent barrier: self-similarity in the Lagrangian descriptor and reactive basins. J. Chem. Phys. 147(6), 064101 (2017)

    ADS  Google Scholar 

  • Kostov, V.B., Orosz, J.A., Feinstein, A.D., Welsh, W.F., Cukier, W., Haghighipour, N., Quarles, B., Martin, D.V., Montet, B.T., Torres, G., et al.: TOI-1338: TESS‘first transiting circumbinary planet. Astron. J. 159(6), 253 (2020)

    ADS  Google Scholar 

  • Laskar, J.: Analytical framework in Poincaré variables for the motion of the solar system. In: Predictability, Stability, and Chaos in N-Body Dynamical Systems, Springer, pp. 93–114 (1991)

  • Laskar, J.: Frequency analysis for multi-dimensional systems. Global dynamics and diffusion. Phys. D: Nonlinear Phenomena 67(1–3), 257–281 (1993)

  • Leleu, A., Alibert, Y., Hara, N., Hooton, M.J., Wilson, T., Robutel, P., Delisle, J.B., Laskar, J., Hoyer, S., Lovis, C., et al.: Six transiting planets and a chain of Laplace resonances in TOI-178. Astron. Astrophys. 649, A26 (2021)

    Google Scholar 

  • Lopesino, C., Balibrea, F., Wiggins, S., Mancho, A.M.: Lagrangian descriptors for two dimensional, area preserving, autonomous and nonautonomous maps. Commun. Nonlinear Sci. Numer. Simul. 27(1–3), 40–51 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  • Luger, R., Sestovic, M., Kruse, E., Grimm, S.L., Demory, B.O., Agol, E., Bolmont, E., Fabrycky, D., Fernandes, C.S., Van Grootel, V., et al.: A seven-planet resonant chain in TRAPPIST-1. Nat. Astron. 1(6), 1–8 (2017)

    Google Scholar 

  • Madrid, J.J., Mancho, A.M.: Distinguished trajectories in time dependent vector fields. Chaos Interdiscip. J. Nonlinear Sci. 19(1), 013111 (2009)

    MathSciNet  Google Scholar 

  • Maffione, N.P., Darriba, L.A., Cincotta, P.M., Giordano, C.M.: A comparison of different indicators of chaos based on the deviation vectors: application to symplectic mappings. Celest. Mech. Dyn. Astron. 111(3), 285–307 (2011). https://doi.org/10.1007/s10569-011-9373-z. arxiv:1108.2196

    Article  ADS  MathSciNet  Google Scholar 

  • Maffione, N.P., Darriba, L.A., Cincotta, P.M., Giordano, C.M.: Chaos detection tools: application to a self-consistent triaxial model. Mon. Not. R. Astron. Soc. 429(3), 2700–2717 (2013)

    ADS  Google Scholar 

  • Mancho, A., Wiggins, S., Curbelo, J., Mendoza, C.: Lagrangian descriptors: a method for revealing phase space structures of general time dependent dynamical systems. Commun. Nonlinear Sci. Numer. Simulat. 18, 3530–3557 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  • Meiss, J.D.: Differential dynamical systems. SIAM (2007)

  • Mendoza, C., Mancho, A.: Hidden geometry of ocean flows. Phys. Rev. Lett. 105(3), 038501 (2010)

    ADS  Google Scholar 

  • Mundel, R., Fredj, E., Gildor, H., Rom-Kedar, V.: New Lagrangian diagnostics for characterizing fluid flow mixing. Phys. Fluids 26(12), 126602 (2014)

    ADS  Google Scholar 

  • Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Nagahata, Y., Hernandez, R., Komatsuzaki, T.: Phase space geometry of isolated to condensed chemical reactions. J. Chem. Phys. 155(21), 210901 (2021)

    ADS  Google Scholar 

  • Nesvornỳ, D., Morbidelli, A.: Three-body mean motion resonances and the chaotic structure of the asteroid belt. Astron. J. 116(6), 3029 (1998)

    ADS  Google Scholar 

  • Pédenon-Orlanducci, R., Carletti, T., Lemaitre, A., Daquin, J.: Geometric parametrisation of Lagrangian Descriptors for 1 degree-of-freedom systems. In: Pinto CM (ed.) Nonlinear Dynamics and Complexity: Mathematical Modelling of Real-World Problems, pp. 221–238, Springer International Publishing (2022)

  • Petit, A.: An integrable model for first-order three-planet mean motion resonances. Celest. Mech. Dyn. Astron. 133(8), 1–23 (2021)

    MathSciNet  MATH  Google Scholar 

  • Quillen, A.C.: Three-body resonance overlap in closely spaced multiple-planet systems. Mon. Not. R. Astron. Soc. 418(2), 1043–1054 (2011)

    ADS  Google Scholar 

  • Raffa, S., Merisio, G., Topputo, F.: Finding regions of bounded motion in binary asteroid environment using Lagrangian descriptors. Commun. Nonlinear Sci. Numer. Simulat. 121, 107198 (2023)

    MathSciNet  MATH  Google Scholar 

  • Ramos, X.S., Correa-Otto, J.A., Beauge, C.: The resonance overlap and Hill stability criteria revisited. Celest. Mech. Dyn. Astron. 123(4), 453–479 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  • Ramos, X.S., Charalambous, C., Benítez-Llambay, P., Beauge, C.: Planetary migration and the origin of the 2: 1 and 3: 2 (near)-resonant population of close-in exoplanets. Astron. Astrophys. 602, A101 (2017)

    ADS  Google Scholar 

  • Rosengren, A.J., Skoulidou, D.K., Tsiganis, K., Voyatzis, G.: Dynamical cartography of Earth satellite orbits. Adv. Space Res. 63(1), 443–460 (2019)

    ADS  Google Scholar 

  • Schneider, J., Dedieu, C., Le Sidaner, P., Savalle, R., Zolotukhin, I.: Defining and cataloging exoplanets: the exoplanet.eu database. Astron. Astrophys. 532, A79 (2011)

  • Sessin, W., Ferraz-Mello, S.: Motion of two planets with periods commensurable in the ratio 2: 1 solutions of the Hori auxiliary system. Celest. Mech. 32(4), 307–332 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  • Skokos, C.: Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits. J. Phys. A: Math. Gen. 34(47), 10029 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  • Skokos, C., Bountis, T., Antonopoulos, C.: Geometrical properties of local dynamics in Hamiltonian systems: the Generalized Alignment Index (GALI) method. Physica D 231(1), 30–54 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  • Stalport, M., Delisle, J.B., Udry, S., Matthews, E., Bourrier, V., Leleu, A.: A general stability-driven approach for the refinement of multi-planet systems. Astron. Astrophys. 664, A53 (2022)

    Google Scholar 

  • Teyssandier, J., Libert, A.S., Agol, E.: TRAPPIST-1: Dynamical analysis of the transit-timing variations and origin of the resonant chain. arXiv preprint arXiv:2110.03340 (2021)

  • Tyler, J., Wittig, A.: An improved numerical method for hyperbolic Lagrangian coherent structures using differential algebra. J. Comput. Sci. 65, 101883 (2022)

    Google Scholar 

Download references

Acknowledgements

J. D. is a postdoctoral researcher of the “Fonds de la Recherche Scientifique” - FNRS. C.C. acknowledges FNRS Grant No. F.4523.20 (DYNAMITE MIS-project). We thank both anonymous reviewers for their report that helped us improve our manuscript. We acknowledge discussions with Elisa Maria Alessi, Ana Maria Mancho, Guillermo García-Sánchez and Timoteo Carletti.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this work.

Corresponding author

Correspondence to Jérôme Daquin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection on Innovative computational methods in Dynamical Astronomy.

Guest Editors: Christoph Lhotka, Giovanni F. Gronchi, Ugo Locatelli, Alessandra Celletti.

Appendices

Appendix A: Application to a discrete case

The framework presented applies also for nearly-integrable discrete systems. For illustrative purpose, following Guillery and Meiss (2017), let us consider the 4-dimensional mapping on \({\mathbb {T}}^{2} \times {\mathbb {R}}^{2}\) reading

$$\begin{aligned} \left\{ \begin{aligned} x_{1}'&=x_{1}+y_{1}, \\ x_{2}'&=x_{2}+y_{2}, \\ y_{1}'&=y_{1}-\frac{1}{2\pi }\big ( a\sin (2\pi x_{1})+c \sin (2\pi (x_{1}+x_{2})) \big ), \\ y_{2}'&=y_{2}-\frac{1}{2\pi }\big ( b\sin (2\pi x_{2})+c \sin (2\pi (x_{1}+x_{2})) \big ), \end{aligned} \right. \end{aligned}$$
(17)

where abc are real parameters. When \(c=0\), the mapping is a product of two uncoupled standard-maps. In the following, we consider \(a=0.1\), \(b=0.1\) and \(c=0.07\), and we generate \(500 \times 500\) initial conditions distributed in the \((y_{1},y_{2})\) action plane \([-0.25,0.65]^{2}\) (fixing \(x_{1}=x_{2}=0\)) iterated up to the final time \(T=10^{3}\). The numerical setting follows closely Guillery and Meiss (2017), who dealt with fast Lyapunov indicators (FLIs, Froeschlé et al. 1997. In Fig. 8, we show alternatively the results of the D and \(\left\Vert \varDelta D\right\Vert \) analysis to provide a global representation of the phase space. Although the diameter reveal the low-order resonant strips, it does not provide clear insights about the geography of lower order resonances, and the distribution of chaotic motions near the resonant crossings. This “flatness” in the map is reinflated by the \(\left\Vert \varDelta D\right\Vert \) index, which reinvigorates minute details of the geography of low-order resonant structures.

B Analytical properties of the diameter for the pendulum model

The non-differentiability of the diameter near the stable equilibrium and its discontinuity when crossing transversally the separatrix of the pendulum (as observed numerically in Fig. 1) are proven analytically.

Proposition 1

(Diameter in elliptic region.) Let \({\mathcal {H}}(p,q)=\frac{p^{2}}{2}+\frac{q^{2}}{2}\) be the Hamiltonian of the linear oscillator, \((p,q) \in D \subset {\mathbb {R}}^{2}\). Then we have

$$\begin{aligned} D(p_{0},q_{0}) = 2\sqrt{p_{0}^{2}+q_{0}^{2}} . \end{aligned}$$
(18)

Proof

The system is 1-DoF  and integrable. Following Pédenon-Orlanducci et al (2022), we parameterise orbits with their energy levels, thus accounting for an infinitely large time-window. The flow generates circles around the origin with radii

$$\begin{aligned} r(p_{0},q_{0})=\sqrt{p_{0}^{2}+q_{0}^{2}}. \end{aligned}$$
(19)

The diameter thus reads

$$\begin{aligned} D(p_{0},q_{0})=2r(p_{0},q_{0}). \end{aligned}$$
(20)

Along the line of initial condition \(q_{0}=0\), one get

$$\begin{aligned} D(p_{0},0)=2\sqrt{p_{0}^{2}}=2\vert p_{0}\vert , \end{aligned}$$
(21)

and in particular D is not differentiable at \(p_{0}=0\). \(\square \)

Proposition 2

(Discontinuity when crossing the separatrix) Let \({\mathcal {H}}(p,q)=\frac{p^{2}}{2}-\cos q\) be the Hamiltonian of the pendulum, \((p,q) \in D \times [-\pi ,\pi ]\), \(D \subset {\mathbb {R}}\). The diameter is discontinuous on the energy level labelling the separatrix.

Proof

The librational domain corresponds to the range of energy \(E \in [-1,1)\), the circulational domain to \(E >1\), and the separatrix has energy \(E=1\). Let \(E_{0}\) denote the initial energy associated to \((p_{0},q_{0})\). The diameter reads

$$\begin{aligned} D(p_{0},q_{0})= \left\{ \begin{aligned}&2 \sqrt{2(E_{0}+1)}, \, E_{0} \in [-1,1), \\&\sqrt{2(E_{0}+1)} - \sqrt{2(E_{0}-1)}, \, E_{0} > 1, \end{aligned} \right. \end{aligned}$$
(22)

from which follows the discontinuity announced at \(E_{0}=1\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daquin, J., Charalambous, C. Detection of separatrices and chaotic seas based on orbit amplitudes. Celest Mech Dyn Astron 135, 31 (2023). https://doi.org/10.1007/s10569-023-10143-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-023-10143-6

Keywords

Navigation