Skip to main content
Log in

Trapping in three-planet resonances during gas-driven migration

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We study the establishment of three-planet resonances—similar to the Laplace resonance in the Galilean satellites—and their effects on the mutual inclinations of the orbital planes of the planets, assuming that the latter undergo migration in a gaseous disc. In particular, we examine the resonance relations that occur, by varying the physical and initial orbital parameters of the planets (mass, initial semi-major axis and eccentricity) as well as the parameters of the migration forces (migration rate and eccentricity damping rate), which are modeled here through a simplified analytic prescription. We find that, in general, for planetary masses below 1.5 M J, multiple-planet resonances of the form n 3 : n 2 : n 1 = 1 : 2 : 4 and 1:3:6 are established, as the inner planets, m 1 and m 2, get trapped in a 1:2 resonance and the outer planet m 3 subsequently is captured in a 1:2 or 1:3 resonance with m 2. For mild eccentricity damping, the resonance pumps the eccentricities of all planets on a relatively short time-scale, to the point where they enter an inclination-type resonance (as in Libert and Tsiganis 2011); then mutual inclinations can grow to ~35°, thus forming a “3-D system”. On the other hand, we find that trapping of m 2 in a 2:3 resonance with m 1 occurs very rarely, for the range of masses used here, so only two cases of capture in a respective three-planet resonance were found. Our results suggest that trapping in a three-planet resonance can be common in exoplanetary systems, provided that the planets are not very massive. Inclination pumping could then occur relatively fast, provided that eccentricity damping is not very efficient so that at least one of the inner planets acquires an orbital eccentricity higher than e = 0.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams F.C., Laughlin G.: Migration and dynamical relaxation in crowded systems of giant planets. Icarus 163, 290–306 (2003)

    Article  ADS  Google Scholar 

  • Beaugé C., Michtchenko T.A., Ferraz-Mello S.: Planetary migration and extrasolar planets in the 2/1 mean-motion resonance. Mon. Not. R. Astron. Soc. 365, 1160–1170 (2005)

    Article  ADS  Google Scholar 

  • Beaugé C., Giuppone C.A., Ferraz-Mello S., Michtchenko T.A.: Reliability of orbital fits for resonant extrasolar planetary systems: the case of HD82943. Mon. Not. R. Astron. Soc. 385, 2151–2160 (2008)

    Article  ADS  Google Scholar 

  • Chatterjee S., Ford E.B., Matsumura S., Rasio F.A.: Dynamical outcomes of planet-planet scattering. Astrophys. J. 686, 580–602 (2008)

    Article  ADS  Google Scholar 

  • Duncan M.J., Levison H.F., Lee M.H.: A multiple time step symplectic algorithm for integrating close encounters. Astron. J.. 116, 2067–2077 (1998)

    Article  ADS  Google Scholar 

  • Fabrycky D., Tremaine S.: Shrinking binary and planetary orbits by Kozai cycles with tidal friction. Astrophys. J. 669, 1298–1315 (2007)

    Article  ADS  Google Scholar 

  • Ferraz-Mello S., Beaugé C., Michtchenko T.A.: Evolution of migrating planet pairs in resonance. Celest. Mech. Dyn. Astron. 87, 99–112 (2003)

    Article  ADS  Google Scholar 

  • Ford E.B., Lystad V., Rasio F.A.: Planet-planet scattering in the upsilon Andromedae system. Nature 434, 873–876 (2005)

    Article  ADS  Google Scholar 

  • Ford E.B., Rasio F.A.: Origins of eccentric extrasolar planets: testing the planet-planet scattering model. Astrophys. J. 686, 621–636 (2008)

    Article  ADS  Google Scholar 

  • Goldreich P., Tremaine S.: Disk-satellite interactions. Astrophys. J 241, 425–441 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  • Hadjidemetriou J.D.: Symmetric and asymmetric librations in extrasolar planetary systems: a global view. Celest. Mech. Dyn. Astron. 95, 225–244 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hadjidemetriou J.D., Psychoyos D., Voyatzis G.: The 1/1 resonance in extrasolar planetary systems. Celest. Mech. Dyn. Astron. 104, 23–38 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Jurić M., Tremaine S.: Dynamical origin of extrasolar planet eccentricity distribution. Astrophys. J. 686, 603–620 (2008)

    Article  ADS  Google Scholar 

  • Lee M.H., Peale S.J.: Dynamics and origin of the 2:1 orbital resonances of the GJ 876 planets. Astrophys. J. 567, 596–609 (2002)

    Article  ADS  Google Scholar 

  • Lee M.H., Thommes E.W.: Planetary migration and eccentricity and inclination resonances in extrasolar planetary systems. Astrophys. J. 702, 1662–1672 (2009)

    Article  ADS  Google Scholar 

  • Libert A.-S., Henrard J.: Exoplanetary systems: the role of an equilibrium at high mutual inclination in shaping the global behavior of the 3-D secular planetary three-body problem. Icarus 191, 469–485 (2007)

    Article  ADS  Google Scholar 

  • Libert A.-S., Henrard J.: Secular frequencies of 3-D exoplanetary systems. Celest. Mech. Dyn. Astron. 100, 209–229 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Libert A.-S., Tsiganis K.: Kozai resonance in extrasolar systems. Astron. Astrophys. 493, 677–686 (2009)

    Article  ADS  MATH  Google Scholar 

  • Libert A.-S., Tsiganis K.: Trapping in high-order orbital resonances and inclination excitation in extrasolar systems. Mon. Not. R. Astron. Soc. 400, 1373–1382 (2009)

    Article  ADS  Google Scholar 

  • Libert A.-S., Tsiganis K.: Formation of ‘3D’ multiplanet systems by dynamical disruption of multiple-resonance configurations. Mon. Not. R. Astron. Soc. 412, 2353–2360 (2011)

    Article  ADS  Google Scholar 

  • Lissauer, J.J., Ragozzine, D., Fabrycky, D.C., Steffen, J.H., Ford, E.B. et al.: Architecture and dynamics of Kepler’s candidate multiple transiting planet systems. arXiv:1102.0543, submitted to Astrophys. J. (2011)

  • Marzari F., Weidenschilling S.J.: Eccentric extrasolar planets: the jumping jupiter model. Icarus 156, 570–579 (2002)

    Article  ADS  Google Scholar 

  • Matsumura S., Thommes E.W., Chatterjee S., Rasio F.A.: Unstable planetary systems emerging out of gas disks. Astrophys. J. 714, 194–206 (2010)

    Article  ADS  Google Scholar 

  • McArthur B.E., Benedict G.F., Barnes R., Martioli E., Korzennik S., Nelan Ed., Butler R.P.: New observational constraints on the andromedae system with data from the Hubble space telescope and Hobby-Eberly telescope. Astrophys. J. 715, 1203–1220 (2010)

    Article  ADS  Google Scholar 

  • Michtchenko T.A., Beaugé C., Ferraz-Mello S.: Stationary orbits in resonant extrasolar planetary systems. Celest. Mech. Dyn. Astron. 94, 411–432 (2006a)

    Article  ADS  MATH  Google Scholar 

  • Michtchenko T.A., Ferraz-Mello S., Beaugé C.: Modeling the 3-D secular planetary three-body problem. Discussion on the outer υ andromedae planetary system. Icarus 181, 555–571 (2006b)

    Article  ADS  Google Scholar 

  • Moorhead A.V., Adams F.C.: Giant planet migration through the action of disk torques and planet planet scattering. Icarus 178, 517–539 (2005)

    Article  ADS  Google Scholar 

  • Morbidelli A., Crida A.: The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus 191, 158–171 (2007)

    Article  ADS  Google Scholar 

  • Morbidelli A., Tsiganis K., Crida A., Levison H.F., Gomes R.: Dynamics of the giant planets of the solar system in the gaseous protoplanetary disk and their relationship to the current orbital architecture. Astron. J. 134, 1790–1798 (2007)

    Article  ADS  Google Scholar 

  • Nagasawa M., Ida S., Bessho T.: Formation of hot planets by a combination of planet scattering, tidal circularization, and the Kozai mechanism. Astrophys. J. 678, 498–508 (2008)

    Article  ADS  Google Scholar 

  • Papaloizou J.C.B., Nelson R.P., Masset F.: Orbital eccentricity growth through disc-companion tidal interaction. Astron. Astrophys. 366, 263–275 (2001)

    Article  ADS  Google Scholar 

  • Pierens A., Nelson R.P.: Constraints on resonant-trapping for two planets embedded in a protoplanetary disc. Astron. Astrophys. 482, 333–340 (2008)

    Article  ADS  MATH  Google Scholar 

  • Reidemeister M., Krivov A.V., Schmidt T.O.B. et al.: A possible architecture of the planetary system HR 8799. Astron. Astrophys. 503, 247–258 (2009)

    Article  ADS  Google Scholar 

  • Rivera E.J., Laughlin G., Butler R.P., Vogt S.S., Haghighipour N., Meschiari S.: The Lick-Carnegie exoplanet survey: a uranus-mass fourth planet for GJ 876 in an extrasolar Laplace configuration. Astrophys. J. 719, 890–899 (2010)

    Article  ADS  Google Scholar 

  • Shakura N.I., Sunyaev R.A.: Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973)

    ADS  Google Scholar 

  • Thommes E.W., Lissauer J.J.: Resonant inclination excitation of migrating giant planets. Astrophys. J. 597, 566–580 (2003)

    Article  ADS  Google Scholar 

  • Thommes E.W., Matsumura S., Rasio F.A.: Gas disks to gas giants: simulating the birth of planetary systems. Science 321, 814–817 (2008)

    Article  ADS  Google Scholar 

  • Ward W.R.: Protoplanet migration by nebula tides. Icarus 126, 261–281 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Sophie Libert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Libert, AS., Tsiganis, K. Trapping in three-planet resonances during gas-driven migration. Celest Mech Dyn Astr 111, 201–218 (2011). https://doi.org/10.1007/s10569-011-9372-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-011-9372-0

Keywords

Navigation