Skip to main content
Log in

Onset of secular chaos in planetary systems: period doubling and strange attractors

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

As a result of resonance overlap, planetary systems can exhibit chaotic motion. Planetary chaos has been studied extensively in the Hamiltonian framework, however, the presence of chaotic motion in systems where dissipative effects are important, has not been thoroughly investigated. Here, we study the onset of stochastic motion in presence of dissipation, in the context of classical perturbation theory, and show that planetary systems approach chaos via a period-doubling route as dissipation is gradually reduced. Furthermore, we demonstrate that chaotic strange attractors can exist in mildly damped systems. The results presented here are of interest for understanding the early dynamical evolution of chaotic planetary systems, as they may have transitioned to chaos from a quasi-periodic state, dominated by dissipative interactions with the birth nebula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albers D.J., Sprott J.C.: Routes to chaos in high-dimensional dynamical systems: a qualitative numerical study. Phys. D Nonlinear Phenom. 223, 194–207 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Batygin K., Bodenheimer P., Laughlin G.: Determination of the interior structure of transiting planets in multiple-planet systems. Astrophys. J. 704, L49–L53 (2009)

    Article  ADS  Google Scholar 

  • Batygin K., Laughlin G.: On the dynamical stability of the solar system. Astrophys. J. 683, 1207–1216 (2008)

    Article  ADS  Google Scholar 

  • Batygin K., Laughlin G., Meschiari S., Rivera E., Vogt S., Butler P.: A quasi-stationary solution to Gliese 436b’s eccentricity. Astrophys. J. 699, 23–30 (2009)

    Article  ADS  Google Scholar 

  • Batygin K., Laughlin G.: Resolving the sin(I) degeneracy in low-mass multi-planet systems. Astrophys. J. 730, 95 (2011)

    Article  ADS  Google Scholar 

  • Beauge C., Ferraz-Mello S.: Resonance trapping in the primordial solar nebula—the case of a Stokes drag dissipation. Icarus 103, 301–318 (1993)

    Article  ADS  Google Scholar 

  • Benettin G., Galgani L., Strelcyn J.-M.: Kolmogorov entropy and numerical experiments. Phys. Rev. A 14, 2338–2345 (1976)

    Article  ADS  Google Scholar 

  • Bruhwiler D.L., Cary J.R.: Diffusion of particles in a slowly modulated wave. Phys. D Nonlinear Phenom. 40, 265–282 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Chirikov B.V.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263–379 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  • Goldreich, P., Soter, S.: Q in the solar system. Icarus 5, 375–389 (1966)

    Article  ADS  Google Scholar 

  • Gonczi R., Froeschle C., Froeschle C.: Poynting–Robertson drag and orbital resonance. Icarus 51, 633–654 (1982)

    Article  ADS  Google Scholar 

  • Henrard J., Henrard M.: Slow crossing of a stochastic layer. Phys. D Nonlinear Phenom. 54, 135–146 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Henrard J., Lemaitre A.: A second fundamental model for resonance. Celest. Mech. 30, 197–218 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Henrard J., Morbidelli A.: Slow crossing of a stochastic layer. Phys. D Nonlinear Phenom. 68, 187–200 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Laskar J.: A numerical experiment on the chaotic behaviour of the solar system. Nature 338, 237 (1989)

    Article  ADS  Google Scholar 

  • Laskar J.: Large-scale chaos in the solar system. Astron. Astrophys. 287, L9–L12 (1994)

    ADS  Google Scholar 

  • Laskar J.: Large scale chaos and marginal stability in the solar system. Celest. Mech. Dyn. Astron. 64, 115–162 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Laskar J., Gastineau M.: Existence of collisional trajectories of mercury, mars and venus with the earth. Nature 459, 817–819 (2009)

    Article  ADS  Google Scholar 

  • Lee M.H., Peale S.J.: Dynamics and origin of the 2:1 orbital resonances of the GJ 876 planets. Astrophys. J. 567, 596–609 (2002)

    Article  ADS  Google Scholar 

  • Lithwick, Y., Wu, Y.: Theory of Secular Chaos and Mercury’s Orbit. ArXiv e-prints arXiv:1012.3706 (2010)

  • Lovis C. et al.: The HARPS search for southern extra-solar planets. XXVIII. Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems. Astron. Astrophys. 528, A112 (2011)

    Article  ADS  Google Scholar 

  • Mardling, R.A.: Long-term tidal evolution of short-period planets with companions. Monthly Notices Roy. Astron. Soc. 382, 1768–1790 (2007)

    ADS  Google Scholar 

  • Morbidelli, A.: Modern Celestial Mechanics: Aspects of Solar System Dynamic. Taylor Francis, London, ISBN 0415279399 (2002)

  • Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge (1999)

  • Murray, N., Holman, M.: The origin of chaos in the outer solar system. Science 283, 1877 (1999)

    Article  ADS  Google Scholar 

  • Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge, pp. c1993 (1993)

  • Sidlichovsky M.: The existence of a chaotic region due to the overlap of secular resonances nu5 and nu6. Celest. Mech. Dyn. Astron. 49, 177–196 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Wisdom J.: The resonance overlap criterion and the onset of stochastic behavior in the restricted three-body problem. Astron. J. 85, 1122–1133 (1980)

    Article  ADS  Google Scholar 

  • Wu Y.: Origin of tidal dissipation in jupiter. II. The value of Q. Astrophys. J. 635, 688–710 (2005)

    Article  ADS  Google Scholar 

  • Wu Y., Goldreich P.: Tidal evolution of the planetary system around HD 83443. Astrophys. J. 564, 1024–1027 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Batygin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batygin, K., Morbidelli, A. Onset of secular chaos in planetary systems: period doubling and strange attractors. Celest Mech Dyn Astr 111, 219–233 (2011). https://doi.org/10.1007/s10569-011-9361-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-011-9361-3

Keywords

Navigation