Skip to main content
Log in

Corrections stemming from the non-osculating character of the Andoyer variables used in the description of rotation of the elastic Earth

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We explore the evolution of the angular velocity of an elastic Earth model, within the Hamiltonian formalism. The evolution of the rotation state of the Earth is caused by the tidal deformation exerted by the Moon and the Sun. It can be demonstrated that the tidal perturbation to spin depends not only upon the instantaneous orientation of the Earth, but also upon its instantaneous angular velocity. Parameterizing the orientation of the Earth figure axis with the three Euler angles, and introducing the canonical momenta conjugated to these, one can then show that the tidal perturbation depends both upon the angles and the momenta. This circumstance complicates the integration of the rotational motion. Specifically, when the integration is carried out in terms of the canonical Andoyer variables (which are the rotational analogues to the orbital Delaunay variables), one should keep in mind the following subtlety: under the said kind of perturbations, the functional dependence of the angular velocity upon the Andoyer elements differs from the unperturbed dependence (Efroimsky in Proceedings of Journées 2004: Systèmes de référence spatio-temporels. l’Observatoire de Paris, pp 74–81, 2005; Efroimsky and Escapa in Celest. Mech. Dyn. Astron. 98:251–283, 2007). This happens because, under angular velocity dependent perturbations, the requirement for the Andoyer elements to be canonical comes into a contradiction with the requirement for these elements to be osculating, a situation that parallels a similar antinomy in orbital dynamics. Under the said perturbations, the expression for the angular velocity acquires an additional contribution, the so called convective term. Hence, the time variation induced on the angular velocity by the tidal deformation contains two parts. The first one comes from the direct terms, caused by the action of the elastic perturbation on the torque-free expressions of the angular velocity. The second one arises from the convective terms. We compute the variations of the angular velocity through the approach developed in Getino and Ferrándiz (Celest. Mech. Dyn. Astron. 61:117–180, 1995), but considering the contribution of the convective terms. Specifically, we derive analytical formulas that determine the elastic perturbations of the directional angles of the angular velocity with respect to a non-rotating reference system, and also of its Cartesian components relative to the Tisserand reference system of the Earth. The perturbation of the directional angles of the angular velocity turns out to be different from the evolution law found in Kubo (Celest. Mech. Dyn. Astron. 105:261–274, 2009), where it was stated that the evolution of the angular velocity vector mimics that of the figure axis. We investigate comprehensively the source of this discrepancy, concluding that the difference between our results and those obtained in Ibid. stems from an oversimplification made by Kubo when computing the direct terms. Namely, in his computations Kubo disregarded the motion of the tide raising bodies with respect to a non-rotating reference system when compared with the Earth rotational motion. We demonstrate that, from a numerical perspective, the convective part provides the principal contribution to the variation of the directional angles and of length of day. In the case of the x and y components in the Tisserand system, the convective contribution is of the same order of magnitude as the direct one. Finally, we show that the approximation employed in Kubo (Ibid.) leads to significant numerical differences at the level of a hundred micro-arcsecond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andoyer H.: Cours de Mécanique Céleste, vol. 1. Gauthier-Villars, Paris (1923)

    Google Scholar 

  • Capitaine, N.: Definition and realization of the celestial intermediate reference system. In: Jin, W., Platais, I., Perryman, M.A.C. (Eds.) A Giant Step: From Milli to Micro-arcsecond Astrometry. Proceedings of the International Astronomical Union, IAU Symposium, vol. 248, pp. 367–373 (2008)

  • Celletti A., Sidorenko V.: Some properties of the dumbbell satellite attitude dynamics. Celest. Mech. Dyn. Astron. 101, 105–126 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Celletti A., Voyatzis G.: Regions of stability in rotational dynamics. Celest. Mech. Dyn. Astron. 107, 101–113 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Cottereau L., Souchay J.: Rotation of rigid Venus: a complete precession-nutation model. Astron. Astrophys. 507, 1635–1648 (2009)

    Article  ADS  MATH  Google Scholar 

  • Dehant V., Arias F., Bizouard Ch., Bretagnon P., Brzezinski A., Buffett B., Capitaine N., Defraigne P., de Viron O., Feissel M., Fliegel H., Forte A., Gambis D., Getino J., Gross. R., Herring T., Kinoshita H., Klioner S., Mathews P.M., McCarthy D., Moisson X., Petrov S., Ponte R.M., Roosbeek F., Salstein D., Schuh H., Seidelmann K., Soffel M., Souchay J., Vondrak J., Wahr J.M., Weber R., Williams J., Yatskiv Y., Zharov V., Zhu S.Y.: Considerations concerning the non-rigid Earth nutation theory. Celest. Mech. Dyn. Astron. 72, 245–310 (1999)

    Article  ADS  Google Scholar 

  • D’Hoedt S., Noyelles B., Dufey J., Lemaître A.: A secondary resonance in Mercury’s rotation. Celest. Mech. Dyn. Astron. 107, 93–100 (2010)

    Article  ADS  MATH  Google Scholar 

  • Efroimsky, M.: On the theory of canonical perturbations and its application to Earth rotation. In: Capitaine, N. (Ed.) Proceedings of Journées 2004: Systèmes de référence spatio-temporels. l’Observatoire de Paris, pp. 74–81 (2005)

  • Efroimsky M.: Gauge freedom in orbital mechanics. Ann. N Y Acad. Sci. 1065, 346–374 (2006)

    Article  ADS  Google Scholar 

  • Efroimsky M., Escapa A.: The theory of canonical perturbations applied to attitude dynamics and to the Earth rotation. Osculating and nonosculating Andoyer variables. Celest. Mech. Dyn. Astron. 98, 251–283 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Efroimsky M., Goldreich P.: Gauge symmetry of the N-body problem in the Hamilton-Jacobi approach. J. Math. Phys. 44, 5958–5977 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Efroimsky M., Goldreich P.: Gauge freedom in the N-body problem of celestial mechanics. Astron. Astrophys. 415, 1187–1199 (2004)

    Article  ADS  MATH  Google Scholar 

  • Escapa A., Getino J.: Complementary developments in the Hamiltonian theory of the non-rigid Earth. Int. J. Appl. Sci. Comp. 7, 142–147 (2000)

    Google Scholar 

  • Escapa A., Getino J., Ferrándiz J.M.: Canonical approach to the free nutations of a three-layer Earth model. J. Geophys. Res. 106, 11387–11397 (2001)

    Article  ADS  Google Scholar 

  • Escapa A., Getino J., Ferrándiz J.M.: Indirect effect of the triaxiality in the Hamiltonian theory for the rigid Earth nutations. Astron. Astrophys. 389, 1047–1054 (2002)

    Article  ADS  Google Scholar 

  • Ferrándiz J.M., Getino J.: On the tidal variation of geopotential. Celest. Mech. Dyn. Astron. 57, 279–292 (1993)

    Article  ADS  Google Scholar 

  • Ferrándiz J.M., Navarro J.F., Escapa A., Getino J.: Precession of the nonrigid earth: effect of the fluid outer core. Astron. J. 128, 1407–1411 (2004)

    Article  ADS  Google Scholar 

  • Ferraz-Mello S.: Canonical Perturbation Theories: Degenerate Systems and Resonance. Springer, New York (2007)

    MATH  Google Scholar 

  • Fukushima T.: Canonical and universal elements of the rotational motion of a triaxial rigid body. Astron J. 136, 1728–1735 (2008)

    Article  ADS  Google Scholar 

  • Getino J.: Forced nutations of a rigid mantle-liquid core earth model in canonical formulation. Geophys. J. Int. 122, 803–814 (1995)

    Article  ADS  Google Scholar 

  • Getino J., Ferrándiz J.M.: A Hamiltonian theory for an elastic earth—Canonical variables and kinetic energy. Celest. Mech. Dyn. Astron. 49, 303–326 (1990)

    Article  ADS  MATH  Google Scholar 

  • Getino J., Ferrándiz J.M.: On the effect of the mantle elasticity on the Earth’s rotation. Celest. Mech. Dyn. Astron. 61, 117–180 (1995)

    Article  ADS  Google Scholar 

  • Getino J., Ferrándiz J.M.: Forced nutations of a two layer Earth model. Mon. Not. R. Astron. Soc. 322, 785–799 (2001)

    Article  ADS  Google Scholar 

  • Getino J., González A.B., Escapa A.: The rotation of a non-rigid, non-symmetrical earth II: free nutations and dissipative effects. Celest. Mech. Dyn. Astron. 76, 1–21 (2000)

    Article  ADS  MATH  Google Scholar 

  • Getino J., Ferrándiz J.M., Escapa A.: Hamiltonian theory for the non-rigid earth: semidiurnal terms. Astron. Astrophys. 370, 330–341 (2001)

    Article  ADS  Google Scholar 

  • Getino J., Escapa A., Miguel D.: General theory of the rotation of the non-rigid Earth at the second order. I. The rigid model in Andoyer variables. Astron. J. 139, 1916–1934 (2010)

    Article  ADS  Google Scholar 

  • Gurfil P., Elipe A., Tangren T., Efroimsky E.: The Serret–Andoyer formalism in rigid-body dynamics: I. Symmetries and perturbations. Regul. Chaot. Dyn. 12, 389–425 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Henrard J.: The rotation of Europa. Celest. Mech. Dyn. Astron. 91, 131–149 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hori G.I.: Theory of general perturbations with unspecified canonical variables. Publ. Astron. Soc. Jpn. 18, 287–296 (1966)

    ADS  Google Scholar 

  • Hori, G.I.: Theory of General Perturbations. In: Tapley, B.D., Szebehely, V. (Eds.) Recent Advances in Dynamical Astronomy. Astrophysics and Space Science Library 39, pp. 231–249 (1973)

  • IERS Conventions 2003, IERS Technical Note 32. In: McCarthy, D.D. & Petit, G. (Eds.) Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie (2003)

  • Jeffreys H.: The Earth. Cambridge University Press, Cambridge (1976)

    Google Scholar 

  • Kaula W.M.: Tidal dissipation by solid friction and the resulting orbital evolution. Rev. Geophys. Space Phys. 2, 661–685 (1964)

    Article  ADS  Google Scholar 

  • Kinoshita H.: First-order perturbations of the two finite-body problem. Pub. Astron. Soc. Jpn. 24, 423–457 (1972)

    MathSciNet  ADS  Google Scholar 

  • Kinoshita H.: Theory of the rotation of the rigid Earth. Celest. Mech. Dyn. Astron. 15, 277–326 (1977)

    MathSciNet  Google Scholar 

  • Kinoshita, H., Sasao, T.: Theoretical aspects of the Earth rotation. In: Kovalesky, J. et al. (Eds.) Reference Frames in Astronomy and Geophysics. Astrophysics and Space Science Library 154, pp. 173–211 (1989)

  • Kinoshita H., Souchay J.: The theory of the nutation for the rigid Earth model at the second order. Celest. Mech. Dyn. Astron. 48, 187–265 (1990)

    Article  ADS  MATH  Google Scholar 

  • Kinoshita H., Nakajima K., Kubo Y., Nakagawa I., Sasao T., Yokoyama K.: Note on nutation in ephemerides. Public Int. Latitude Observat. Mizusawa XII(1), 71–108 (1978)

    Google Scholar 

  • Kopeikin S.M., Pavlis E., Pavlis D., Brumberg V.A., Escapa A., Getino J., Gusev A., Mueller J., Ni W.T., Petrova N.: Prospects in the orbital and rotational dynamics of the Moon with the advent of sub-centimeter lunar laser ranging. Adv. Space Res. 42, 1378–1390 (2008)

    Article  ADS  Google Scholar 

  • Kubo Y.: Solution to the rotation of the elastic Earth by method of rigid dynamics. Celest. Mech. Dyn. Astron. 50, 165–187 (1991)

    Article  ADS  MATH  Google Scholar 

  • Kubo Y.: Rotation of the elastic earth: the role of the angular-velocity-dependence of the elasticity-caused perturbation. Celest. Mech. Dyn. Astron. 105, 261–274 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Moritz H., Mueller I.: Earth Rotation. Frederic Ungar, New York (1986)

    Google Scholar 

  • Munk W.K., MacDonald G.J.F.: The Rotation of the Earth: A Geophysical Discussion. Cambridge University Press, Cambridge (1960)

    Google Scholar 

  • Noyelles B.: Titan’s rotational state. The effects of a forced “free” resonant wobble. Celest. Mech. Dyn. Astron. 101, 13–30 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Routh E.J.: The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies, 6th ed., rev. and enl. Dover Publications, New York (1955)

    Google Scholar 

  • Schreiber, K.U., Velikoseltsev, A., Rothacher, M., Klügel, T., Stedman, G.E.: Direct measurement of diurnal polar motion by ring laser gyroscopes. J. Geophys. Res. (2004). doi:10.1029/2003JB002803

  • Souchay J., Losley B., Kinoshita H., Folgueira M.: Corrections and new developments in rigid earth nutation theory. III. Final tables “REN-2000” including crossed-nutation and spin-orbit coupling effects. Astron. Astrophys. Suppl. Ser. 135, 111–131 (1999)

    Article  ADS  Google Scholar 

  • Touma J., Wisdom J.: Lie-Poisson integrators for rigid body dynamics in the solar system. Astron. J. 107, 1189–1202 (1994)

    Article  ADS  Google Scholar 

  • Touma J., Wisdom J.: Nonlinear core-mantle coupling. Astron. J. 122, 1030–1050 (2001)

    Article  ADS  Google Scholar 

  • Vilhena de Moraes R., Cabette R.E.S., Zanardi M.C., Stuchi T.J., Formiga J.K.: Attitude stability of artificial satellites subject to gravity gradient torque. Celest. Mech. Dyn. Astron. 104, 337–353 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Wahr J.M., Sasao T., Smith M.: Effect of the fluid core on changes in the length of day due to long period tides. Geophys. J. Int. 64, 635–650 (1981)

    Article  ADS  Google Scholar 

  • Wintner A.: The Analytical Foundations of Celestial Mechanics. Princeton University Press, Princeton (1941)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Escapa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escapa, A. Corrections stemming from the non-osculating character of the Andoyer variables used in the description of rotation of the elastic Earth. Celest Mech Dyn Astr 110, 99–142 (2011). https://doi.org/10.1007/s10569-011-9339-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-011-9339-1

Keywords

Navigation