Skip to main content
Log in

Celestial reference frames and the gauge freedom in the post-Newtonian mechanics of the Earth–Moon system

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We introduce the Jacobi coordinates adopted to the advanced theoretical analysis of the relativistic Celestial Mechanics of the Earth–Moon system. Theoretical derivation utilizes the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. The resolutions assume that the Solar System is isolated and space-time is asymptotically flat at infinity and the primary reference frame covers the entire space-time, has its origin at the Solar System barycenter (SSB) with spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are assumed to be at rest on the sky forming the International Celestial Reference Frame (ICRF). The second reference frame has its origin at the Earth–Moon barycenter (EMB). The EMB frame is locally inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames—geocentric and selenocentric—have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description of the metric tensor and relative equations of motion of the Moon with respect to Earth. Each local frame can be converted to kinematically non-rotating one after alignment with the axes of ICRF by applying the matrix of the relativistic precession as recommended by the IAU resolutions. The set of one global and three local frames is introduced in order to decouple physical effects of gravity from the gauge-dependent effects in the equations of relative motion of the Moon with respect to Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alley C.O.: Laser ranging to retro-reflectors on the moon as a test of theories of gravity. In: Meystre, P., Scully, M.O. (eds) Quantum Optics, Experimental Gravitation, and Measurement Theory, NATO ASI Series: Physics, vol. 94, pp. 429–495. Plenum Press, New York (1983)

    Google Scholar 

  • Baierlein R.: Testing general relativity with laser ranging to the Moon. Phys. Rev. 162(5), 1275–1287 (1967). doi:10.1103/PhysRev.162.1275

    Article  ADS  Google Scholar 

  • Battat, J., Murphy, T., Adelberger, E., Hoyle, C.D., McMillan, R., Michelsen, E., Nordtvedt, K, Orin A, Stubbs C, Swanson H.E.: APOLLO: Testing Gravity with Millimeter-precision Lunar Laser Ranging. APS Meeting Abstracts p. 12.003 (2007)

  • Bender P.L., Currie D.G., Dicke R.H., Eckhardt D.H., Faller J.E., Kaula W.M., Mulholland J.D., Plotkin H.H., Poultney S.K., Silverberg E.C., Wilkinson D.T., Williams J.G., Alley C.O.: The lunar laser ranging experiment. Science 182, 229–238 (1973). doi:10.1126/science.182.4109.229

    Article  ADS  Google Scholar 

  • Bender, P.L., Faller, J.E., Hall, J.L., Degnan, J.J., Dickey, J.O., Newhall, X.X., Williams, J.G., King RW, Macknik, L.O., O’Gara, D.: Microwave and optical lunar transponders. In: Mumma, M.J., Smith, H.J. (eds.) Astrophysics from the Moon, American Institute of Physics Conference Series, vol. 207, pp. 647–653 (1990). doi:10.1063/1.39357

  • Bertotti B., Ciufolini I., Bender P.L.: New test of general relativity—measurement of de sitter geodetic precession rate for lunar perigee. Phys. Rev. Lett. 58, 1062–1065 (1987). doi:10.1103/PhysRevLett.58.1062

    Article  MathSciNet  ADS  Google Scholar 

  • Brumberg V.: On derivation of EIH (Einstein–Infeld–Hoffman) equations of motion from the linearized metric of general relativity theory. Cel. Mech. Dyn. Astron. 99, 245–252 (2007). doi:10.1007/s10569-007-9094-5

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Brumberg V.A.: Relativistic corrections in the theory of motion of the Moon. Bull. Inst. Theor. Astron. 6(10(83)), 733–756 (1958)

    Google Scholar 

  • Brumberg V.A.: Relativistic Celestial Mechanics. Nauka, Moscow (1972) (in Russian)

    MATH  Google Scholar 

  • Brumberg, V.A.: Relativistic reduction of astronomical measurements and reference frames. In: Gaposchkin, E.M., Kolaczek, B. (eds.) ASSL vol. 86: IAU Colloq. 56: Reference Coordinate Systems for Earth Dynamics, pp. 283–294 (1981)

  • Brumberg V.A.: Essential Relativistic Celestial Mechanics. Adam Hilger, New York (1991)

    MATH  Google Scholar 

  • Brumberg, V.A., Kopejkin, S.M.: Relativistic theory of celestial reference frames. In: Kovalevsky, J., Mueller, I.I., Kolaczek, B. (eds.) ASSL vol. 154: Reference Frames, pp. 115–141 (1989a)

  • Brumberg V.A., Kopejkin S.M.: Relativistic reference systems and motion of test bodies in the vicinity of the Earth. Nuovo. Cimento. B Ser. 103, 63–98 (1989)

    Article  ADS  Google Scholar 

  • Calame O., Mulholland J.D.: Lunar tidal acceleration determined from laser range measures. Science 166, 977–978 (1978)

    Article  ADS  Google Scholar 

  • Chapront J., Chapront-Touzé M., Francou G.: Determination of the lunar orbital and rotational parameters and of the ecliptic reference system orientation from LLR measurements and IERS data. Astron. Astrophys. 343, 624–633 (1999)

    ADS  Google Scholar 

  • Chapront J., Chapront-Touzé M., Francou G.: A new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements. Astron. Astrophys. 387, 700–709 (2002). doi:10.1051/0004-6361:20020420

    Article  ADS  Google Scholar 

  • Chapront-Touze M., Chapront J.: The lunar ephemeris ELP 2000. Astron. Astrophys. 124(1), 50–62 (1983)

    MathSciNet  ADS  Google Scholar 

  • Chazy J.: La Théorie de la relativité et la mécanique céleste Tome I, 1928 et Tome II, 1930. Éditions Jacques Gabay, Paris (2005)

    Google Scholar 

  • Ciufolini, I.: Lunar laser ranging, gravitomagnetism and frame-dragging. ArXiv e-prints 0809.3219 (2008)

  • Cook A.: The Motion of the Moon. Adam Hilger, Bristol (1988)

    MATH  Google Scholar 

  • Currie D.G., Cantone C., Carrier W.D., Dell’Agnello S., Delle Monache G., Murphy T., Rubincam D., Vittori R.: A lunar laser ranging retro-reflector array for the 21st Century. LPI Contrib. 1415, 2145 (2008)

    ADS  Google Scholar 

  • Damour T., Esposito-Farese G.: Tensor-multi-scalar theories of gravitation. Class. Quantum Gravity 9, 2093–2176 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Damour T., Soffel M., Xu C.: General-relativistic celestial mechanics. I. Method and definition of reference systems. Phys. Rev. D 43, 3273–3307 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  • Damour T., Soffel M., Xu C.: General-relativistic celestial mechanics. IV. Theory of satellite motion. Phys. Rev. D 49, 618–635 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  • de Sitter W.: On Einstein’s theory of gravitation and its astronomical consequences second paper. Mon. Not. Roy. Astron. Soc. 77(2), 155–184 (1916)

    ADS  Google Scholar 

  • Dickey J.O., Newhall X.X., Williams J.G.: Investigating relativity using lunar laser ranging—geodetic precession and the nordtvedt effect. Adv. Space Res. 9, 75–78 (1989)

    Article  ADS  Google Scholar 

  • Eddington A.S.: The Mathematical Theory of Relativity. Chelsea, New York (1975)

    Google Scholar 

  • Eichhorn H.: Inertial systems—definitions and realizations. Cel. Mech. 34, 11–18 (1984). doi:10.1007/BF01235787

    Article  ADS  Google Scholar 

  • Einstein A.: Die grundlage der allgemeinen relativitätstheorie. Ann. Phys. 354(7), 769–822 (1916). doi:10.1002/andp.19163540702

    Article  Google Scholar 

  • Einstein A., Infeld L., Hoffmsann B.: The gravitational equations and the problem of motion. Ann. Math. 39(1), 65–100 (1938)

    Article  Google Scholar 

  • Eling, C., Jacobson, T., Mattingly, D.: Einstein-Æther theory. In: Liu, J.T., Duff, M.J., Stelle, K.S., Woodward, R.P. (eds.) Deserfest: A Celebration of the Life and Works of Stanley Deser, pp. 163–179 (2006)

  • Estabrook F.B.: Post-newtonian N-body equations of the brans-dicke theory. Astrophys. J. 158, 81–83 (1969). doi:10.1086/150172

    Article  MathSciNet  ADS  Google Scholar 

  • Fienga A., Manche H., Laskar J., Gastineau M.: INPOP06: a new numerical planetary ephemeris. Astron. Astrophys. 477, 315–327 (2008). doi:10.1051/0004-6361:20066607

    Article  ADS  Google Scholar 

  • Fock V.A.: The Theory of Space, Time and Gravitation. Pergamon Press, New York (1959)

    MATH  Google Scholar 

  • Gullstrand A.: Allgemeine lösung des statischen einkörproblems in der einsteinschen gravitationstheorie. Arkiv. Mat. Astron. Fys. 16(8), 1–15 (1922)

    Google Scholar 

  • Gutzwiller M.C.: Moon–Earth–Sun: the oldest three-body problem. Rev. Mod. Phys. 70(2), 589–639 (1998)

    Article  ADS  Google Scholar 

  • Hakim R.: An elementary introduction to relativistic gravitation. Cel. Mech. Dyn. Astron. 72, 1–36 (1998). doi:10.1023/A:1008372412952

    Article  MathSciNet  ADS  Google Scholar 

  • Huang C., Jin W., Xu H.: The terrestrial and lunar reference frame in lunar laser ranging. J. Geod. 73, 125–129 (1999). doi:10.1007/s001900050227

    Article  ADS  Google Scholar 

  • Huang, C.L., Jin, W.J., Xu, H.G.: The terrestrial and lunar reference frame in LLR. Shanghai Obs. Ann. pp. 169–175 (1996)

  • Infeld L., Plebański J.: Motion and Relativity. Oxford University Press, Oxford (1960)

    MATH  Google Scholar 

  • Iorio, L.: Will it be possible to measure intrinsic gravitomagnetism with lunar laser ranging? ArXiv e-prints 0809.4014 (2008)

  • Klioner S.A., Voinov A.V.: Relativistic theory of astronomical reference systems in closed form. Phys. Rev. D 48, 1451–1461 (1993)

    Article  ADS  Google Scholar 

  • Kopeikin, S.: The gravitomagnetic influence on earth-orbiting spacecrafts and on the lunar orbit. ArXiv e-prints 0809.3392 (2008)

  • Kopeikin, S., Vlasov, I.: Parametrized post-newtonian theory of reference frames, multipolar expansions and equations of motion in the N-body problem. Phys. Rep. 400, 209–318 (2004). doi:10.1016/j.physrep.2004.08.004, gr-qc/0403068

  • Kopeikin, S., Xie, Y.: Post-newtonian reference frames for advanced theory of the lunar motion and a new generation of lunar laser ranging. ArXiv e-prints 0902.2416 (2009)

  • Kopeikin, S.M.: Comment on “Gravitomagnetic Influence on Gyroscopes and on the Lunar Orbit”. Phys. Rev. Lett. 98(22), 229,001–+ (2007a). doi:10.1103/PhysRevLett.98.229001, arXiv:gr-qc/0702120

  • Kopeikin, S.M.: Relativistic reference frames for astrometry and navigation in the Solar System. In: Belbruno, E. (ed.) New Trends in Astrodynamics and Applications III, American Institute of Physics Conference Series, vol. 886, pp. 268–283 (2007b). doi:10.1063/1.2710062

  • Kopeikin, S.M., Fomalont, E.B.: Gravimagnetism, causality, and aberration of gravity in the gravitational light-ray deflection experiments. Gen. Relat. Gravi. 39, 1583–1624 (2007). doi:10.1007/s10714-007-0483-6, arXiv:gr-qc/0510077

  • Kopeikin S.M., Pavlis E., Pavlis D., Brumberg V.A., Escapa A., Getino J., Gusev A., Müller J., Ni W.T., Petrova N.: Prospects in the orbital and rotational dynamics of the Moon with the advent of sub-centimeter lunar laser ranging. Adv. Space Res. 42, 1378–1390 (2008). doi:10.1016/j.asr.2008.02.014,0710.1450

    Article  ADS  Google Scholar 

  • Kopejkin S.M.: Celestial coordinate reference systems in curved space-time. Cel. Mech. 44, 87–115 (1988). doi:10.1007/BF01230709

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Kostelecky, A.: Theory and status of lorentz violation. APS Meeting Abstracts p. I3.00001 (2008)

  • Kudryavtsev S.M.: Accurate harmonic development of lunar ephemeris LE-405/406. Highlights Astron. 14, 472 (2007). doi:10.1017/S1743921307011477

    ADS  Google Scholar 

  • Landau L.D., Lifshitz E.M.: The classical Theory of Fields. Pergamon Press, Oxford (1975)

    Google Scholar 

  • Lestrade J.F., Bretagnon P.: Relativistic perturbations for all the planets. Astron. Astrophys. 105(1), 42–52 (1982)

    MATH  ADS  Google Scholar 

  • Li, G.Y., Zhao, H.B., Xia, Y., Zeng, F., Luo, Y.J.: PMOE planetary/lunar ephemeris framework†. In: IAU Symposium, IAU Symposium, vol. 248, pp. 560–562 (2008). doi:10.1017/S1743921308020140

  • Lorentz, H.A., Droste, J.: The collected papers of H.A. Lorentz.: Chap The Motion of a System of Bodies Under the Influence of their Mutual Attraction, According to Einstein’s theory, pp. 330–355. Nijhoff, The Hague (1937)

  • Lorimer D.R., Kramer M.: Handbook of Pulsar Astronomy. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  • Mashhoon B., Theiss D.S.: Relativistic effects in the motion of the Moon. In: Lämmerzahl, C., Everitt, C.W.F., Hehl, F.W. (eds) Gyros,Clocks, Interferometers: Testing Relativistic Gravity in Space, pp. 310–316. Springer, Berlin (2001)

    Chapter  Google Scholar 

  • Meyer, F., Seitz, F., Mueller, J.: Algorithm for reliable normal point calculation of noisy LLR measurements. In: Schreiber, U., Werner, C., Kamerman, G.W., Singh, U.N. (eds.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 4546, pp. 154–159 (2002)

  • Moyer T.D.: Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation. Wiley, Hoboken, New Jersey (2003)

    Book  Google Scholar 

  • Mueller J., Schneider M., Soffel M., Ruder H.: Testing einstein’s theory of gravity by analyzing lunar laser ranging data. Astrophys. J. Lett. 382, L101–L103 (1991). doi:10.1086/186222

    Article  ADS  Google Scholar 

  • Mukhanov V.: Physical Foundations of Cosmology. Cambridge University Press, Cambridge, UK (2005)

    Book  MATH  Google Scholar 

  • Müller J., Nordtvedt K.: Lunar laser ranging and the equivalence principle signal. Phys. Rev. D 58(6), 062,001 (1998). doi:10.1103/PhysRevD.58.062001

    Article  Google Scholar 

  • Müller J., Nordtvedt K., Vokrouhlický D.: Improved constraint on the α1 PPN parameter from lunar motion. Phys. Rev. D 54, 5927–5930 (1996). doi:10.1103/PhysRevD.54.R5927

    Article  ADS  Google Scholar 

  • Müller, J., Williams, J.G., Turyshev, S.G.: Lunar laser ranging contributions to relativity and geodesy. In: Dittus, H., Lämmerzahl, C., Turyshev, S.G. (eds.) Lasers, Clocks and Drag-Free Control: Exploration of Relativistic Gravity in Space, Astrophysics and Space Science Library, vol. 349, pp. 457–472 (2008a)

  • Müller J., Soffel M., Klioner S.A.: Geodesy and Relativity. J. Geod. 82, 133–145 (2008). doi:10.1007/s00190-007-0168-7

    Article  MATH  ADS  Google Scholar 

  • Murphy T.W., Michelson E.L., Orin A.E., Adelberger E.G., Hoyle C.D., Swanson H.E., Stubbs C.W., Battat J.B.: Apollo: a new push in lunar laser ranging. Int. J. Mod. Phys. D 16, 2127–2135 (2007). doi:10.1142/S0218271807011589

    Article  ADS  Google Scholar 

  • Murphy, T.W., Adelberger, E.G., Battat, J.B.R., Carey, L.N., Hoyle, C.D., Leblanc, P., Michelsen, E.L., Nordtvedt, K., Orin, A.E., Strasburg, J.D., Stubbs, C.W., Swanson, H.E., Williams, E.: The apache point observatory lunar laser-ranging operation: instrument description and first detections. Publ. Astron. Soc. Pac. 120, 20–37 (2008). doi:10.1086/526428, 0710.0890

    Google Scholar 

  • Murphy, T.W. Jr., Nordtvedt, K., Turyshev, S.G.: Gravitomagnetic influence on gyroscopes and on the lunar orbit. Phys. Rev. Lett. 98(7):071,102 (2007a). doi:10.1103/PhysRevLett.98.071102, gr-qc/0702028

  • Murphy, T.W. Jr., Nordtvedt, K., Turyshev, S.G.: Murphy, nordtvedt, and turyshev reply:. Phys. Rev. Lett. 98(22), 229,002 (2007b). doi:10.1103/PhysRevLett.98.229002, 0705.0513

  • Newhall, X.X., Standish, E.M. Jr., Williams, J.G.: Planetary and lunar ephemerides, lunar laser ranging and lunar physical librations. (Lecture). In: Ferraz-Mello, S., Morando, B., Arlot, J.E. (eds.) Dynamics, Ephemerides, and Astrometry of the Solar System, IAU Symposium, vol. 172, pp. 37–44 (1996)

  • Nordtvedt K.: Existence of the gravitomagnetic interaction. Int. J. Theor. Phys. 27, 1395–1404 (1988). doi:1007/BF00671317

    Article  MATH  Google Scholar 

  • Nordtvedt, K.: Lunar laser ranging—a comprehensive probe of the post-newtonian long range interaction. In: Lämmerzahl, C., Everitt, C.W.F., Hehl, F.W. (eds.) Gyros, Clocks, Interferometers ...: Testing Relativistic Gravity in Space, Lecture Notes in Physics, vol. 562, pp. 317–329. Springer Verlag, Berlin (2001)

    Chapter  Google Scholar 

  • Painlevé P.: La mécanique classique et la théorie de la relativité. C. R. Acad. Sci. (Paris) 173, 677–680 (1921)

    Google Scholar 

  • Pearlman M., Degnan J., Bosworth J.: The international laser ranging service. Adv. Space Res. 30(2), 135–143 (2002). doi:10.1016/S0273-1177(02)00277-6

    Article  ADS  Google Scholar 

  • Petrova N.M.: On equations of motion and tensor of matter for a system of finite masses in general theory of relativity. Zh. Exp. Theor. Phys. 19, 989–999 (1949)

    MathSciNet  Google Scholar 

  • Pitjeva E.V.: High-precision ephemerides of planetsEPM and determination of some astronomical constants. Sol. Sys. Res. 39(3), 176–186 (2005)

    Article  ADS  Google Scholar 

  • Rambaux, N., Williams, J.G., Boggs, D.H.: A dynamically active Moon—lunar free librations and excitation mechanisms. In: Lunar and Planetary Institute Conference Abstracts, Lunar and Planetary Inst. Technical Report, vol. 39, p. 1769 (2008)

  • Roy A.E.: Orbital Motion. Institute of Physics Publishing, Bristol (2005)

    Google Scholar 

  • Soffel M., Ruder H., Schneider M.: The dominant relativistic terms in the lunar theory. Astron. Astrophys. 157(2), 357–364 (1986)

    MATH  ADS  Google Scholar 

  • Soffel, M., Klioner, S.A., Petit, G., Wolf, P., Kopeikin, S.M., Bretagnon, P., Brumberg, V.A., Capitaine, N., Damour, T., Fukushima, T., Guinot, B., Huang, T.Y., Lindegren, L., Ma, C., Nordtvedt, K., Ries, J.C., Seidelmann, P.K., Vokrouhlický, D., Will, C.M., Xu, C.: The IAU 2000 resolutions for astrometry, celestial mechanics, and metrology in the relativistic framework: explanatory supplement. Astron. J. (USA) 126, 2687–2706 (2003). doi:10.1086/378162, eprint astro-ph/0303376

    Google Scholar 

  • Soffel M., Klioner S., Müller J., Biskupek L.: Gravitomagnetism and lunar laser ranging. Phys. Rev. D 78(2), 024,033 (2008). doi:10.1103/PhysRevD.78.024033

    Article  Google Scholar 

  • Soffel M.H.: Relativity in Astrometry, Celestial Mechanics and Geodesy. Springer, Berlin (1989)

    Google Scholar 

  • Standish, E.M.: JPL Planetary and Lunar Ephemerides, DE405/LE405. JPL IOM 312.F-98-048. Jet Propulsion Laboratory (1998)

  • Standish, E.M. : Planetary and lunar ephemerides: testing alternate gravitational theories. In: Macias, A., Lämmerzahl, C., Camacho, A. (eds.) Recent Developments in Gravitation and Cosmology, American Institute of Physics Conference Series, vol. 977, pp. 254–263 (2008). doi:10.1063/1.2902789

  • Standish, E.M., Williams, G.: Dynamical reference frames in the planetary and Earth–Moon systems. In: Lieske, J.H., Abalakin, V.K. (eds.) Inertial Coordinate System on the Sky, IAU Symposium, vol. 141, pp. 173–180 (1990)

  • Synge J.L.: Relativity: The General Theory. Series in Physics. North-Holland Publication Co., Amsterdam (1964) c1964

    Google Scholar 

  • Tao J.H., Huang T.Y., Han C.H.: Coordinate transformations and gauges in the relativistic astronomical reference systems. Astron. Astrophys. 363, 335–342 (2000)

    ADS  Google Scholar 

  • Walter H.G., Sovers O.J.: Astrometry of Fundamental Catalogues: the Evolution from Optical to Radio Reference Frames. Springer-Verlag, Berlin, Heidelberg (2000)

    Google Scholar 

  • Will C.M.: Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  • Williams J.G.: A scheme for lunar inner core detection. Geophys. Res. Lett. 34, 3202 (2007). doi:10.1029/2006GL028185

    Article  Google Scholar 

  • Williams J.G., Dicke R.H., Bender P.L., Alley C.O., Currie D.G., Carter W.E., Eckhardt D.H., Faller J.E., Kaula W.M., Mulholland J.D.: New test of the equivalence principle from lunar laser ranging. Phys. Rev. Lett. 36, 551–554 (1976). doi:10.1103/PhysRevLett.36.551

    Article  ADS  Google Scholar 

  • Williams, J.G., Newhall, X.X., Yoder, C.F., Dickey, J.O.: Lunar free libration. In: Lunar and Planetary Institute Conference Abstracts, Lunar and Planetary Inst. Technical Report, vol. 27, p. 1439 (1996)

  • Williams, J.G., Boggs D.H., Ratcliff, J.T., Yoder, C.F., Dickey, J.O.: Influence of a fluid lunar core on the moon’s orientation. In: Lunar and Planetary Institute Conference Abstracts, Lunar and Planetary Inst. Technical Report, vol. 32, p. 2028 (2001a)

  • Williams J.G., Boggs D.H., Yoder C.F., Ratcliff J.T., Dickey J.O.: Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. 106, 27933–27968 (2001). doi:10.1029/2000JE001396

    Article  ADS  Google Scholar 

  • Williams, J.G., Boggs D.H., Ratcliff J.T., Dickey, J.O. : Lunar rotation and the lunar interior. In: Mackwell, S., Stansbery, E. (eds.) Lunar and Planetary Institute Conference Abstracts, Lunar and Planetary Inst. Technical Report, vol. 34, p. 1161 (2003)

  • Williams, J.G., Turyshev, S.G., Murphy, T.W.: Improving LLR tests of gravitational theory. Int. J. Mod. Phys. D 13, 567–582 (2004). doi:10.1142/S0218271804004682, arXiv:gr-qc/0311021

  • Williams, J.G., Boggs, D.H., Ratcliff, J.T.: Lunar tides, fluid core and core/mantle boundary. In: Lunar and Planetary Institute Conference Abstracts, Lunar and Planetary Inst. Technical Report, vol. 39, p. 1484 (2008)

  • Xu H., Jin W.: Tidal acceleration of the moon. Shanghai Obs. Ann. 15, 129–133 (1994)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Kopeikin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopeikin, S., Xie, Y. Celestial reference frames and the gauge freedom in the post-Newtonian mechanics of the Earth–Moon system. Celest Mech Dyn Astr 108, 245–263 (2010). https://doi.org/10.1007/s10569-010-9303-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-010-9303-5

Keywords

Navigation