Skip to main content
Log in

Orbital structure of self-consistent cuspy triaxial stellar systems

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We used a multipolar code to create, through dissipationless collapses of systems of 106 particles, two cuspy self-consistent triaxial stellar systems with γ ≈ 1. One of the systems has an axial ratio similar to that of an E4 galaxy and it is only mildly triaxial (T = 0.914), while the other one is strongly triaxial (T = 0.593) and its axial ratio lies in between those of Hubble types E5 and E6. Both models rotate although their total angular momenta are zero, i.e., they exhibit figure rotation. The angular velocity is very small for the less triaxial model and, while it is larger for the more triaxial one, it is still comparable to that found by Muzzio (Celest Mech Dynam Astron 96(2):85–97, 2006) to affect only slightly the dynamics of a similar model. Except for minor evolution, probably caused by unavoidable relaxation effects of the N-body code, the systems are highly stable. The potential of each system was subsequently approximated with interpolating formulae yielding smooth potentials, stationary in frames that rotate with the models. The Lyapunov exponents could then be computed for randomly selected samples of the bodies that make up the two systems, allowing the recognition of regular and of partially and fully chaotic orbits. Finally, the regular orbits were Fourier analyzed and classified using their locations on the frequency map. Most of the orbits are chaotic, and by a wide margin: less than 30% of the orbits are regular in our most triaxial model. Regular orbits are dominated by tubes, long axis ones in the less triaxial model and short axis tubes in the more triaxial one. Most of the boxes are resonant (i.e., they are boxlets), as could be expected from cuspy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilar L.A., Merritt D.: The structure and dynamics of galaxies formed by cold dissipationless collapse. Astrophys. J. 354, 33–51 (1990)

    Article  ADS  Google Scholar 

  • Aquilano R.O., Muzzio J.C., Navone H.D., Zorzi A.F.: Orbital structure of self-consistent triaxial stellar systems. Celest. Mech. Dynam. Astron. 99(4), 307–324 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Binney J., Spergel D.: Spectral stellar dynamics. Astrophys. J. 252, 308–321 (1982)

    Article  ADS  Google Scholar 

  • Binney J., Tremaine S.: Galactic Dynamics. Princeton University Press, Princeton, NJ (2008)

    MATH  Google Scholar 

  • Carpintero D.D., Aguilar L.A.: Orbit classification in arbitrary 2D and 3D potentials. MNRAS 298(1), 1–21 (1998)

    Article  ADS  Google Scholar 

  • Carpintero D.D., Wachlin F.C.: Sensitivity of the orbital content of a model stellar system to the potential approximation used to describe it. Celest. Mech. Dynam. Astron. 96(2), 129–136 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Contopoulos G.: Order and Chaos in Dynamical Astronomy. Springer, Berlin (2002)

    MATH  Google Scholar 

  • Forbes D.A., Ponman T.J.: On the relationship between age and dynamics in elliptical galaxies. Mon. Not. R. Astron. Soc. 309, 623–628 (1999)

    Article  ADS  Google Scholar 

  • Hernquist L., Barnes J.: Are some N-body algorithms intrinsically less collisional than others?. Astrophys. J. 349, 562–569 (1990)

    Article  ADS  Google Scholar 

  • Hernquist L., Ostriker J.P.: A self-consistent field method for galactic dynamics. Astrophys. J. 386(20), 375–397 (1992)

    Article  ADS  Google Scholar 

  • Holley-Bockelmann K., Mihos J.C., Sigurdsson S., Hernquist L.: Models of cuspy triaxial galaxies. Astrophys. J. 549, 862–870 (2001)

    Article  ADS  Google Scholar 

  • Holley-Bockelmann K., Mihos J.C., Sigurdsson S., Hernquist L., Norman C.: The evolution of cuspy triaxial galaxies harboring central black holes. Astrophys. J. 567, 817–827 (2002)

    Article  ADS  Google Scholar 

  • Jesseit R., Naab T., Burkert A.: Orbital structure of collisionless merger remnants: on the origin of photometric and kinematic properties of elliptical and S0 galaxies. Mon. Not. R. Astron. Soc. 360, 1185–1200 (2005)

    Article  ADS  Google Scholar 

  • Kalapotharakos C.: The rate of secular evolution in elliptical galaxies with central masses. MNRAS 389(4), 1709–1721 (2008)

    Article  ADS  Google Scholar 

  • Kalapotharakos C., Voglis N.: Global dynamics in self-consistent models of elliptical galaxies. Celest. Mech. Dynam. Astron. 92(1–3), 157–188 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Kandrup H.E., Sideris I.V.: Chaos in cuspy triaxial galaxies with a supermassive balck hole: a simple toy model. Celest. Mech. Dynam. Astron. 82, 61–81 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Kandrup H.E., Siopis C.: Chaos and chaotic phase mixing in cuspy triaxial potentials. MNRAS 345, 727–742 (2003)

    Article  ADS  Google Scholar 

  • Merritt D., Fridman T.: Triaxial galaxies with cups. Astrophys. J. 339, 752–762 (1996)

    Google Scholar 

  • Miralda-Escudé J., Schwarzschild M.: On the orbit structure of the logarithmic potential. ApJ 409, 563–577 (1989)

    Google Scholar 

  • Muzzio J.C.: Regular and chaotic orbits in a self-consistent triaxial stellar system with slow figure rotation. Celest. Mech. Dynam. Astron. 96(2), 85–97 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Muzzio J.C.: Regular and Chaotic Motion in Elliptical Galaxies. In: Contopoulos, G., Patsis, P. (eds) Chaos in Astronomy, pp. 203–214. Springer, Berlin (2009)

    Google Scholar 

  • Muzzio J.C., Mosquera M.E.: Spatial structure of regular and chaotic orbits in self-consistent models of galactic satellites. Celest. Mech. Dynam. Astron. 88(4), 379–396 (2004)

    Article  MATH  ADS  Google Scholar 

  • Muzzio J.C., Carpintero D.D., Wachlin F.C.: Spatial structure of regular and chaotic orbits in a self-consistent triaxial stellar system. Celest. Mech. Dynam. Astron. 91(1–2), 173–190 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Napolitano N.R., Capaccioli M., Romanowsky A.J., Douglas, N.G. Merrifield M.R., Kuijken K., Arnaboldi M., Gerhard O., Freeman K.C.: Mass-to-light ratio gradients in early-type galaxy haloes. Mon. Not. R. Astron. Soc. 357, 691–706 (2005)

    Article  ADS  Google Scholar 

  • Schwarzschild M.: A numerical model for a triaxal stellar system in dynamical equilibrium. ApJ 232, 236–247 (1979)

    Article  ADS  Google Scholar 

  • Schwarzschild M.: Self-consistent models for galactic halos. ApJ 409, 563–577 (1993)

    Article  ADS  Google Scholar 

  • S̆idlichovský M., Nesvorný D.: Frequency modified Fourier transform and its application to asteroids. Celest. Mech. Dynam. Astron. 65, 137–148 (1997)

    Article  Google Scholar 

  • Sparke L.S., Sellwood J.A.: Dissection of an N-body bar. MNRAS 225, 653–675 (1987)

    ADS  Google Scholar 

  • Udry S., Pfenniger D.: Stochasticity in elliptical galaxies. Astron. Astroph. 198(1–2), 135–149 (1988)

    MATH  MathSciNet  ADS  Google Scholar 

  • Voglis N., Kalapotharakos C., Stavropoulos I.: Mass components in ordered and in chaotic motion in galactic N-body models. MNRAS 337(2), 619–630 (2002)

    Article  ADS  Google Scholar 

  • White S.D.M.: Simulations of sinking satellites. Astroph. J. 274, 53–61 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Muzzio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muzzio, J.C., Navone, H.D. & Zorzi, A.F. Orbital structure of self-consistent cuspy triaxial stellar systems. Celest Mech Dyn Astr 105, 379–395 (2009). https://doi.org/10.1007/s10569-009-9241-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-009-9241-2

Keywords

Navigation