Skip to main content
Log in

Optimal switching strategy for radially accelerated trajectories

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper studies the problem of a spacecraft subject to an outward radial thrust, with constant modulus, that may be switched on or off at suitable time intervals. The problem is to find the optimal strategy to guarantee the possibility of transferring the spacecraft from an initial to a final position in a given time interval using the least amount of thrust level. The problem is solved in an optimal framework, using an indirect approach. A number of different mission scenarios are studied in detail: escape missions, flyby missions and rendezvous missions. In the latter case the spacecraft uses a hybrid system comprising an high thrust propulsion system for the final impulsive maneuver. The optimal switching strategy allows one to substantially decrease the thrust level when compared to the continuous case (without thrust modulation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baoyin H., Mcinnes C.R.: Solar sail halo orbits at the sun-earth artificial L 1 point. Celest. Mech. Dyn. Astron. 94(2), 155–171 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Bate R.R., Mueller D.D., White J.E.: Fundamentals of Astrodynamics, pp. 429. Dover Publications, New York (1971)

    Google Scholar 

  • Battin R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series, pp. 408–415. AIAA, New York (1987)

    Google Scholar 

  • Bryson A.E., Ho Y.C.: Applied Optimal Control, Ch 2, pp. 71–89. Hemisphere, New York (1975)

    Google Scholar 

  • Conway B.A., Chilan C.M., Wall B.J.: Evolutionary principles applied to mission planning problems. Celest. Mech. 97(2), 73–86 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Dachwald, B.: Fast solar system escape missions using non-futuristic solar sails. In: Pioneer Anomaly Workshop. ZARM, Bremen, 18–19 May (2004a)

  • Dachwald, B.: Solar sail performance requirements for missions to the outer solar system and beyond. In: 55th International Astronautical Congress. Paper IAC–04–S.P.11, Vancouver, 04–08 October (2004b)

  • Jacobson R.A., Powers W.F.: Optimal low-thrust takeoff from an orbit about an oblate planet. Celest. Mech. 15(2), 161–189 (1977)

    Article  MATH  ADS  Google Scholar 

  • Janhunen P.: Electric sail for spacecraft propulsion. J. Propuls. Power 20(4), 763–764 (2004)

    Article  Google Scholar 

  • Janhunen P.: The electrical sail—a new propulsion method which may enable fast missions to the outer solar system. J. Br. Interplanet. Soc. 61, 322–325 (2008)

    Google Scholar 

  • Janhunen P.: On the feasibility of a negative polarity electric sail. Ann. Geophys. 27(4), 1439–1447 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  • Janhunen P., Sandroos A.: Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion. Ann. Geophys. 25(3), 755–767 (2007)

    Article  ADS  Google Scholar 

  • Kim M., Hall C.D.: Symmetries in the optimal control of solar sail spacecraft. Celest. Mech. Dyn. Astron. 92(4), 273–293 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Kirpichnikov S.N., Kirpichnikova E.S., Polyakhova E.N., Shmyrov A.S.: Planar heliocentric roto-translatory motion of a spacecraft with a solar sail of complex shape. Celest. Mech. Dyn. Astron. 63(3–4), 255–269 (1995)

    ADS  Google Scholar 

  • Koblik V., Polyakhova E., Sokolov L.: Controlled solar sail transfers into near-sun regions combined with planetary gravity-assist flybys. Celest. Mech. Dyn. Astron. 86(1), 59–80 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Leipold M., Fichtner H., Heber B., Groepper P., Lascar S., Burger F., Eiden M., Niederstadt T., Sickinger C., Herbeck L., Dachwald B., Seboldt W.: Heliopause explorer—a sailcraft mission to the outer boundaries of the solar system. Acta Astronautica 59(8–11), 785–796 (2006)

    Article  ADS  Google Scholar 

  • McInnes C.R.: Orbits in a generalized two-body problem. J. Guid. Control Dyn. 26(5), 743–749 (2003)

    Article  Google Scholar 

  • McInnes C.R., Brown J.C.: The dynamics of solar sails with a non-point source of radiation pressure. Celest. Mech, Dyn. Astron. 49(3), 249–264 (1990)

    Article  ADS  Google Scholar 

  • Mengali G., Quarta A.A.: Earth escape by ideal sail and solar-photon thrustor spacecraft. J. Guid. Control Dyn. 27(6), 1105–1108 (2004)

    Article  Google Scholar 

  • Mengali G., Quarta A.A.: Near-optimal solar-sail orbit-raising from low earth orbit. J. Spacecr. Rocket. 42(5), 954–958 (2005a)

    Article  ADS  Google Scholar 

  • Mengali G., Quarta A.A.: Optimal control laws for axially symmetric solar sails. J. Spacecr. Rocket. 42(6), 1130–1133 (2005b)

    Article  ADS  Google Scholar 

  • Mengali G., Quarta A.A.: Optimal three-dimensional interplanetary rendezvous using nonideal solar sail. J. Guid. Control Dyn. 28(1), 173–177 (2005c)

    Article  Google Scholar 

  • Mengali G., Quarta A.A.: Time-optimal three-dimensional trajectories for solar photon thruster spacecraft. J. Spacecr. Rocket. 42(2), 379–381 (2005d)

    Article  ADS  Google Scholar 

  • Mengali G., Quarta A.A.: Minimagnetospheric plasma propulsion for outer planet missions. J. Guid. Control Dyn. 29(5), 1239–1242 (2006a)

    Article  Google Scholar 

  • Mengali G., Quarta A.A.: Optimal missions with minimagnetospheric plasma propulsion. J. Guid. Control Dyn. 29(1), 209–212 (2006b)

    Article  Google Scholar 

  • Mengali G., Quarta A.A.: Escape from elliptic orbit using constant radial thrust. J. Guid. Control Dyn. 32(3), 1018–1022 (2009a)

    Article  Google Scholar 

  • Mengali, G., Quarta, A.A.: Non-keplerian orbits for electric sails. Celest. Mech. Dyn. Astr. (2009b, in press) doi:10.1007/s10569-009-9200-y

  • Mengali G., Quarta A.A., Janhunen P.: Considerations of electric sailcraft trajectory design. J. Br. Interplanet. Soc. 61, 326–329 (2008a)

    Google Scholar 

  • Mengali G., Quarta A.A., Janhunen P.: Electric sail performance analysis. J. Spacecr. Rocket. 45(1), 122–129 (2008b)

    Article  Google Scholar 

  • Prussing J.E., Coverstone V.L.: Constant radial thrust acceleration redux. J. Guid. Control Dyn. 21(3), 516–518 (1998)

    Article  Google Scholar 

  • Quarta A.A., Mengali G.: Solar sail missions to mercury with venus gravity assist. Acta Astronautica 65(3–4), 495–506 (2009)

    Article  ADS  Google Scholar 

  • Racca G.D.: New challenges to trajectory design by the use of electric propulsion and other new means of wandering in the solar system. Celest. Mech. Dyn. Astron. 85, 1–24 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Stengel R.F.: Optimal Control and Estimation, pp. 222–254. Dover, Mineola (1994)

    MATH  Google Scholar 

  • Trask, A.J., Mason, W.J., Coverstone, V.L.: Optimal interplanetary trajectories utilizing constant radial thrust and gravitational assists. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit. AIAA Paper 2002-4731, Monterey (2002)

  • Trask A.J., Mason W.J., Coverstone V.L.: Optimal interplanetary trajectories using constant radial thrust and gravitational assists. J. Guid. Control Dyn. 27(3), 503–506 (2004)

    Article  Google Scholar 

  • Tsien H.S.: Take-off from satellite orbit. J. Am. Rocket Soc. 23(4), 233–236 (1953)

    Google Scholar 

  • Winglee, R.M., Euripides, P., Ziemba, T., Slough, J., Giersch, L.: Simulation of mini-magnetospheric plasma propulsion (m2p2) interacting with an external plasma wind. In: 39th Joint Propulsion Conference and Exhibition. AIAA Paper 2003-5225, Huntsville (2003)

  • Winglee R.M., Slough J., Ziemba T., Goodson A.: Mini-magnetospheric plasma propulsion: tapping the energy of the solar wind for spacecraft propulsion. J. Geophys. Res. 105(A9), 21067–21078 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Mengali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quarta, A.A., Mengali, G. Optimal switching strategy for radially accelerated trajectories. Celest Mech Dyn Astr 105, 361–377 (2009). https://doi.org/10.1007/s10569-009-9233-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-009-9233-2

Keywords

Navigation