Skip to main content
Log in

Lagrangian coherent structures in the planar elliptic restricted three-body problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This study investigates Lagrangian coherent structures (LCS) in the planar elliptic restricted three-body problem (ER3BP), a generalization of the circular restricted three-body problem (CR3BP) that asks for the motion of a test particle in the presence of two elliptically orbiting point masses. Previous studies demonstrate that an understanding of transport phenomena in the CR3BP, an autonomous dynamical system (when viewed in a rotating frame), can be obtained through analysis of the stable and unstable manifolds of certain periodic solutions to the CR3BP equations of motion. These invariant manifolds form cylindrical tubes within surfaces of constant energy that act as separatrices between orbits with qualitatively different behaviors. The computation of LCS, a technique typically applied to fluid flows to identify transport barriers in the domains of time-dependent velocity fields, provides a convenient means of determining the time-dependent analogues of these invariant manifolds for the ER3BP, whose equations of motion contain an explicit dependency on the independent variable. As a direct application, this study uncovers the contribution of the planet Mercury to the Interplanetary Transport Network, a network of tubes through the solar system that can be exploited for the construction of low-fuel spacecraft mission trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Campagnola, S., Lo, M.: BepiColombo gravitational capture and the elliptic restricted three-body problem. In: 18th ICIAM07 6th International Congress on Industrial and Applied Mathematics, pp. 1–2. Zurich, Switzerland (2007)

  • Campagnola, S., Corral, C., Jehn, R., Yáñez, A.: Bepicolombo Mercury cornerstone mission analysis: inputs for the reassessment phase of the definition study. Tech. Rep. Mission Analysis Office Working Paper 452, ESA/ESOC (2003)

  • Campagnola, S., Jehn, R., Sanchez, N.: Bepicolombo Mercury cornerstone mission analysis: alternative transfer options and gravity field determination.Tech. Rep. Mission Analysis Office Working Paper 476, ESA/ESOC (2006)

  • Conley C.: Low energy transit orbits in the restricted three-body problem. SIAM J. Appl. Math. 16, 732–746 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  • Dellnitz M., Junge O., Koon W.S., Lekien F., Lo M.W., Marsden J.E., Padberg K., Preis R., Ross S., Thiere B.: Transport in dynamical astronomy and multibody problems. Int. J. Bifurc. Chaos 15, 699–727 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Garcia F., Gómez G.: A note on weak stability boundaries. Celest. Mech. Dyn. Astron. 97, 87–100 (2007)

    Article  MATH  ADS  Google Scholar 

  • Giorgini J.D., Yeomans D.K., Chamberlin A.B., Chodas P.W., Jacobson R.A., Keesey M.S., Lieske J.H., Ostro S.J., Standish E.M., Wimberly R.N.: JPL’s on-line solar system data service. Bull. Am. Astron. Soc. 28, 1158 (1996)

    ADS  Google Scholar 

  • Goldstein H., Poole C., Safko J.: Classical Mechanics. Addison Wesley, San Fransisco (2002)

    Google Scholar 

  • Gómez, G., Koon, W.S., Lo, M., Marsden, J.E., Masdemont, J., Ross, S.D.: Invariant manifolds, the spatial three-body problem and space mission design. In: AAS/AIAA Astrodynamics Specialist Conference, pp. 1–20. Quebec City, Canada (2001)

  • Gómez G., Koon W.S., Lo M., Marsden J.E., Masdemont J., Ross S.D.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17, 1571–1606 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Haller G.: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D 149, 248–277 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Jehn, R., Campagnola, S., Garcia, D., Kemble, S.: Low-thrust approach and gravitational capture at Mercury. In: 18th International Symposium on Space Flights Dynamics, pp. 1–6. Munich, Germany (2004)

  • Kemble S.: Interplanetary Mission Analysis and Design. Springer, Berlin (2006)

    Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: The Genesis trajectory and heteroclinic connections. In: AAS/AIAA Astrodynamics Specialist Conference, pp. 99–451. Girdwood, Alaska (1999)

  • Koon W.S., Lo M., Marsden J.E., Ross S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10, 427–469 (2000a)

    Article  MATH  MathSciNet  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Shoot the Moon. In: AAS/AIAA Astrodynamics Specialist Conference, pp. 1–8. Florida (2000b)

  • Koon W.S., Lo M.W., Marsden J.E., Ross S.D.: Dynamical systems, the three-body problem, and space mission design. In: Fiedler, B., Grger, K., Sprekels, J. (eds) International Conference on Differential Equations, pp. 1167–1181. World Scientific, Berlin (2000c)

    Google Scholar 

  • Koon W.S., Lo M., Marsden J.E., Ross S.D.: Resonance and capture of Jupiter comets. Celest. Mech. Dyn. Astron. 81, 27–38 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Lekien F., Shadden S.C., Marsden J.E.: Lagrangian coherent structures in n-dimensional systems. J. Math. Phys. 48, 1–19 (2007)

    Article  MathSciNet  Google Scholar 

  • Marsden J.E., Ross S.D.: New methods in celestial mechanics and mission design. Bull. Am. Math. Soc. 43, 43–73 (2005)

    Article  MathSciNet  Google Scholar 

  • Marsden J.E., West M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Parker T.S., Chua L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer-Verlag, New York (1989)

    MATH  Google Scholar 

  • Perozzi E., Di Salvo A.: Novel spaceways for reaching the moon: an assessment for exploration. Celest. Mech. Dyn. Astron. 102, 207–218 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Porter M.A., Cvitanović P.: Ground control to Niels Bohr: Exploring outer space with atomic physics. Not. Am. Math. Soc. 52, 1020–1025 (2005)

    MATH  Google Scholar 

  • Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, New York (1992)

    Google Scholar 

  • Ross, S.D.: Cylindrical manifolds and tube dynamics in the restricted three-body problem. Ph.D. thesis, California Institute of Technology, Pasadena, CA (2004)

  • Shadden S.C., Lekien F., Marsden J.E.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212, 271–304 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Szebehely V.G.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967)

    Google Scholar 

  • Yeomans, D.K.: NASA jet propulsion laboratory: solar system dynamics. http://ssd.jpl.nasa.gov/ (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan S. Gawlik.

Electronic supplementary material

The Below is the Electronic Supplementary Material.

ESM 1 (MOV 1068 kb)

ESM 2 (MOV 1094 kb)

ESM 3 (AVI 16265 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gawlik, E.S., Marsden, J.E., Du Toit, P.C. et al. Lagrangian coherent structures in the planar elliptic restricted three-body problem. Celest Mech Dyn Astr 103, 227–249 (2009). https://doi.org/10.1007/s10569-008-9180-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-008-9180-3

Keywords

Navigation