Skip to main content
Log in

Stickiness in three-dimensional volume preserving mappings

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We investigate the orbital diffusion and the stickiness effects in the phase space of a 3-dimensional volume preserving mapping. We first briefly review the main results about the stickiness effects in 2-dimensional mappings. Then we extend this study to the 3-dimensional case, studying for the first time the behavior of orbits wandering in the 3-dimensional phase space and analyzing the role played by the hyperbolic invariant sets during the diffusion process. Our numerical results show that an orbit initially close to a set of invariant tori stays for very long times around the hyperbolic invariant sets near the tori. Orbits starting from the vicinity of invariant tori or from hyperbolic invariant sets have the same diffusion rule. These results indicate that the hyperbolic invariant sets play an essential role in the stickiness effects. The volume of phase space surrounded by an invariant torus and its variation with respect to the perturbation parameter influences the stickiness effects as well as the development of the hyperbolic invariant sets. Our calculations show that this volume decreases exponentially with the perturbation parameter and that it shrinks down with the period very fast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chirikov B., Shepelyansky D.L.: Correlation properties of dynamical chaos in Hamiltonian systems. Physica D 13, 395–400 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Contopoulos G., Voglis N., Efthymiopoulos C., Froeschlé Cl., Gonczi R., Lega E., Dvorak R., Lohinger E.: Transition spectra of dynamical systems. Celest. Mech. Dyn. Astron. 67, 293–317 (1997)

    Article  MATH  ADS  Google Scholar 

  • Contopoulos G., Harsoula M., Voglis N., Dvorak R.: Destruction of islands of stability. J. Phys. A: Math. Gen. 32, 5213–5232 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Dvorak R., Contopoulos G., Efthymiopoulos Ch., Voglis N.: “Stickiness” in mappings and dynamical systems. Planet. Space Sci. 46, 1567–1578 (1998)

    Article  Google Scholar 

  • Efthymiopoulos C., Contopoulos G., Voglis N.: Cantori, islands and asympototic curves in the stickiniess region. Celest. Mech. Dyn. Astron. 73, 221–230 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Froeschlé Cl., Lega E.: Modelling mappings: an aim and a tool for the study of dynamical systems. In: Benest, D., Froeschlé, Cl. (eds) Analysis and Modelling of Discrete Dynamical Systems, pp. 3–54. Gordon and Breach Science Publishers, Netherlands (1998)

    Google Scholar 

  • Karney C.F.: Long-time correlations in the stochastic regime. Physica D 8, 360–380 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  • Karney C.F., Rechester A.B., White R.B.: Effect of noise on the standard mapping. Physica D 4, 425–438 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  • Lai Y.C., Ding M.Z., Grebogi C., Blumel R.: Algebraic decay and fluctuations of the decay exponent in Hamiltonian systems. Phys. Rev. A 46, 4661–4669 (1992)

    Article  ADS  Google Scholar 

  • Liu J., Sun Y.S.: Chaotic motion of comets in near-parabolic orbit: mapping aproaches. Celest. Mech. Dyn. Astron. 60, 3–28 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Meiss J.D., Ott E.: Markov-tree model of intrinsic transport in Hamiltonian systems. Phys. Rev. Lett. 55, 2741–2744 (1985)

    Article  ADS  Google Scholar 

  • Perry A.D., Wiggins S.: KAM tori are very sticky: rigorous lower bounds on the time to move away from an invariant Lagrangian torus with linear flow. Physica D 71, 102–121 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Sun Y.S., Fu Y.N.: Diffusion character in four-dimensional volume preserving map. Celest. Mech. Dyn. Astron. 73, 249–258 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Sun Y.S., Yan Z.M.: A perturbed extension of hyperbolic twist mapping. Celest. Mech. Dyn. Astron. 42, 369–383 (1988)

    MathSciNet  Google Scholar 

  • Sun Y.S., Zhou J.L., Zheng J.Q., Valtonen M.: Diffusion in comet motion. Contemp. Math. 292, 229–238 (2002)

    MathSciNet  Google Scholar 

  • Sun Y.S., Zhou L.Y., Zhou J.L.: The role of hyperbolic invariant sets in stickiness effects. Celest. Mech. Dyn. Astron. 92, 257–272 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Todorović N., Lega E., Froeschlé Cl.: Local and global diffusion in the Arnold web of a priori unstable system, Celest. Mech. Dyn. Astron. 102, 13–27 (2007)

    Article  Google Scholar 

  • Zhou J.L., Zhou L.Y., Sun Y.S.: Hyperbolic invariant set and stickiness effect. Chin. Phys. Lett. 19, 1254–1256 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Yong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, YS., Zhou, LY. Stickiness in three-dimensional volume preserving mappings. Celest Mech Dyn Astr 103, 119–131 (2009). https://doi.org/10.1007/s10569-008-9173-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-008-9173-2

Keywords

Navigation