Skip to main content
Log in

Periodic orbits and bifurcations in the Sitnikov four-body problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We study the existence, linear stability and bifurcations of what we call the Sitnikov family of straight line periodic orbits in the case of the restricted four-body problem, where the three equal mass primary bodies are rotating on a circle and the fourth (small body) is moving in the direction vertical to the center mass of the other three. In contrast to the restricted three-body Sitnikov problem, where the Sitnikov family has infinitely many stability intervals (hence infinitely many Sitnikov critical orbits), as the “family parameter” ż0 varies within a finite interval (while z 0 tends to infinity), in the four-body problem this family has only one stability interval and only twelve 3-dimensional (3D) families of symmetric periodic orbits exist which bifurcate from twelve corresponding critical Sitnikov periodic orbits. We also calculate the evolution of the characteristic curves of these 3D branch-families and determine their stability. More importantly, we study the phase space dynamics in the vicinity of these orbits in two ways: First, we use the SALI index to investigate the extent of bounded motion of the small particle off the z-axis along its interval of stable Sitnikov orbits, and secondly, through suitably chosen Poincaré maps, we chart the motion near one of the 3D families of plane-symmetric periodic orbits. Our study reveals in both cases a fascinating structure of ordered motion surrounded by “sticky” and chaotic orbits as well as orbits which rapidly escape to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belbruno E., Llibre J. and Ollé M. (1994). On the families of periodic orbits which bifurcate from the circular Sitnikov motions. Celest. Mech. Dyn. Astr. 60: 99

    Article  ADS  MATH  Google Scholar 

  • Bennett A. (1965). Characteristic exponents of the five equilibrium solutions in the elliptically restricted problem. Icarus 4: 177

    Article  ADS  Google Scholar 

  • Corbera M. and Llibre J. (2000). Periodic orbits of the Sitnikov problem via a Poincaré map. Celest. Mech. Dyn. Astr. 77: 273

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Danby J.M.A. (1964). Stability of the triangular points in the elliptic restricted problem of three bodies. Astron. J. 69: 165

    Article  ADS  MathSciNet  Google Scholar 

  • Dvorak R. (1993). Numerical results to the Sitnikov-problem. Celest. Mech. Dyn. Astr. 56: 71

    Article  ADS  Google Scholar 

  • Faruque S.B. (2003). Solution of the Sitnikov problem. Celest. Mech. Dyn. Astr. 87: 353

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Giacaglia G. (1967). Regularization of the restricted problem of four bodies. Astron. J. 69: 165

    Google Scholar 

  • Hadjidemetriou J. (1975). The stability of periodic orbits in the three-body problem. Cel. Mech. 12: 255

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hagel J. (1992). A new analytic approach to the Sitnikov problem. Celest. Mech. Dyn. Astr. 53: 267

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hagel J. and Lhotka C. (2005). A high order perturbation analysis of the Sitnikov problem. Celest. Mech. Dyn. Astr. 93: 201

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hénon M. (1973). Vertical stability of periodic orbits in the restricted problem I Equal masses. Astron. Astrophys. 28: 415

    ADS  Google Scholar 

  • Jiménez-Lara L. and Escalona-Buendía A. (2001). Symmetries and bifurcations in the Sitnikov problem. Celest. Mech. Dyn. Astr. 79: 97

    Article  ADS  MATH  Google Scholar 

  • Liu J. and Sun Y.-S. (1990). On the Sitnikov problem. Celest. Mech. Dyn. Astr. 49: 285

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Llibre J. and Simó C. (1990). Estudio cualitativo del problema de Sitnikov. Pub. Mat. U.A.B. 18: 49

    Google Scholar 

  • Marchal C. (1990). The Three Body Problem. Studies in Astronautics, vol. 4. Elsevier, Amsterdam

    Google Scholar 

  • Markellos V.V., Goudas C.L. and Katsiaris G.A. (1981). Investigating the Universe, vol. 319. D. Reidel Publ. Co., Dordrecht, Holland

    Google Scholar 

  • McMillan W.D. (1913). An integrable case in the restricted problem of three bodies. Astron. J. 27: 285

    Google Scholar 

  • Moser J. (1973). Stable and Random Motions in Dynamical Systems. Annals of Mathematics Studies, vol. 77. Princeton Univ. Press and University of Tokio Press, Princeton, New Jersey

    Google Scholar 

  • Moulton F.R. (1914). On the stability of direct and retrograde satellite orbits. Monthly Notices Roy. Astron. Soc. 75: 40

    ADS  Google Scholar 

  • Pavanini, G.: Sopra una nuova categoria di soluzioni periodiche nel problema dei tre corpi. Ann. Math. Serie III, Tomo XIII (1907)

  • Pedersen P. (1952). Stabilitätsuntersuchungen im restringierten Vierkörperproblem. Dan. Mat. Fys. Medd. 26: 16

    Google Scholar 

  • Perdios E.A. (2007). The manifold of families of 3D periodic orbits associated to Sitnikov motions in the restricted three-body problem. Celest. Mech. Dyn. Astr. 99: 85

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Perdios E.A. and Markellos V.V. (1988). Stability and bifurcations of Sitnikov motions. Celes. Mech. 42: 187

    Article  ADS  MathSciNet  Google Scholar 

  • Simó C. (1978). Relative equilibrium solutions in the four-body problem. Celes. Mech. 18: 165

    Article  ADS  MATH  Google Scholar 

  • Sitnikov K. (1960). Existence of oscillating motions for the three-body problem. Dokl. Akad. Nauk. USSR 6: 303

    MathSciNet  Google Scholar 

  • Soulis P.S., Bountis T. and Dvorak R. (2007). Stability of motion in the Sitnikov problem. Celest. Mech. Dyn. Astr. 99: 129

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Skokos Ch. (2001). Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits. J. Phys. A: Math. Gen. 34: 10029

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Skokos Ch., Antonopoulos Ch., Bountis T.C. and Vrahatis M.N. (2004). Detecting order and chaos on Hamiltonian systems by the SALI method. J. Phys. A: Math. Gen. 37: 6269

    Article  ADS  MathSciNet  Google Scholar 

  • Wintner A. (1947). The Analytical Foundations of Celestial Mechanics, vol. 151. Princeton Univ. Press, Princeton, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Papadakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soulis, P.S., Papadakis, K.E. & Bountis, T. Periodic orbits and bifurcations in the Sitnikov four-body problem. Celest Mech Dyn Astr 100, 251–266 (2008). https://doi.org/10.1007/s10569-008-9118-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-008-9118-9

Keywords

Navigation